Wind Farm Group Voltage Control Strategy Considering Both Regulation Speed and Reactive Power Equalization
Zhu Xiaorong1, Liu Wei1, Ye Shiqi1, Zhu Dandan2, Xu Xiaochun3
1. Department of Electrical Engineering North China Electric Power University Baoding 071003 China; 2. Electric Power Research Institute State Grid Jiangsu Electric Power Co. Ltd Nanjing 211103 China; 3. State Grid Huaian Power Supply Company Huaian 223001 China
Abstract:Under the two-stage voltage control architecture of provincial regulation, the superior dispatching control center directly sends the voltage command value to the automatic voltage control (AVC) sub-stations of each wind farm, and the AVC sub-stations of each wind farm in the wind power cluster independently perform voltage control without communication with each other. In this case, the AVC sub-stations of each wind farm can only obtain the operation data of the local station. The high efficiency and accuracy of reactive power allocation cannot be achieved through AVC master station, which makes the voltage regulation efficiency of wind power cluster low. In addition, due to the different response time of the energy management platform and the wind turbine, the voltage regulation response speed of the wind farm is also different. Wind farms with fast regulation speed bear more reactive power, and wind farms with slow regulation speed bear less reactive power, resulting in unbalanced reactive power and waste of reactive power regulation capacity. Firstly, this paper analyzes the influence of reactive power regulation period and regulation step of AVC sub-station on the voltage control of wind farm grid-connected point. Considering that the operating parameters of each wind farm equipment in the actual system are relatively fixed, the reactive power regulation period is not easy to change, and the fixed adjustment step cannot take into account the adjustment speed and adjustment accuracy. Therefore, this paper focuses on improving the voltage regulation speed of wind farm by changing the reactive power regulation step length. Secondly, because the voltage of the wind farm grid-connected point is not only related to the reactive power output of its own station, but also affected by the reactive power output of other stations, this paper proposes a voltage control strategy of the AVC sub-station of wind power plant based on "variable step perturbation observation". This strategy changes the output reactive power of the wind power plant, and then measures the voltage change of the grid-connected point, and evaluate the influence of voltage control of other wind farms on the wind farm grid-connected point, dynamically adjust the reactive power regulation step of AVC sub-station, improve the voltage regulation speed of the wind farm, so that the voltage of the wind farm grid-connected point can enter the voltage dead zone faster. Thirdly, in order to improve the reactive power imbalance in the wind power cluster, the reactive power constraint relationship of the wind farm stations in the cluster is established by analyzing the voltage reactive power coupling relationship between each wind farm, and considering the difference of the reactive power margin of each wind farm station, the variable step size control strategy is improved, and an improved wind farm voltage control strategy considering reactive power constraint is proposed. The voltage regulation speed and reactive power balance of wind power cluster are considered. Finally, based on the operating data of a wind power cluster in East China, a simulation model of wind farm convergence system is built to verify the effectiveness of the proposed strategy.
朱晓荣, 刘伟, 叶世琦, 朱丹丹, 徐晓春. 兼顾调节速度和无功均衡度的风电场群电压控制策略[J]. 电工技术学报, 2025, 40(13): 4216-4228.
Zhu Xiaorong, Liu Wei, Ye Shiqi, Zhu Dandan, Xu Xiaochun. Wind Farm Group Voltage Control Strategy Considering Both Regulation Speed and Reactive Power Equalization. Transactions of China Electrotechnical Society, 2025, 40(13): 4216-4228.
[1] 国家能源局发布2023年全国电力工业统计数据[J]. 电力科技与环保, 2024, 40(1): 95. National Energy Administration released statistical data of national electric power industry in 2023[J]. Electric Power Technology and Environmental Protection, 2024, 40(1): 95. [2] 王渝红, 宋雨妍, 廖建权, 等. 风电电压主动支撑技术现状与发展趋势[J]. 电网技术, 2023, 47(8): 3193-3205. Wang Yuhong, Song Yuyan, Liao Jianquan, et al.Review and development trends of DFIG-based wind power voltage active support technology[J]. Power System Technology, 2023, 47(8): 3193-3205. [3] 薛霖, 牛涛, 方斯顿, 等. 计及高比例风电暂态电压安全的主从协同动态无功优化方法[J]. 电力系统自动化, 2023, 47(17): 57-66. Xue Lin, Niu Tao, Fang Sidun, et al.Master-slave cooperative dynamic reactive power optimization method considering transient voltage security of high proportion of wind power[J]. Automation of Electric Power Systems, 2023, 47(17): 57-66. [4] 孙宏斌, 郭庆来, 张伯明. 电力系统自动电压控制[M]. 北京: 科学出版社, 2018. [5] Yang Qiuling, Wang Gang, Sadeghi A, et al.Two-timescale voltage control in distribution grids using deep reinforcement learning[J]. IEEE Transactions on Smart Grid, 2020, 11(3): 2313-2323. [6] 彭啸宇, 沈怡, 陆秋瑜, 等. 考虑风电出力不确定性的电网无功-电压控制鲁棒分区方法[J]. 电网技术, 2023, 47(10): 4102-4111. Peng Xiaoyu, Shen Yi, Lu Qiuyu, et al.Robust var-voltage control partitioning for power grid considering wind power uncertainty[J]. Power System Technology, 2023, 47(10): 4102-4111. [7] 徐峰达, 郭庆来, 孙宏斌, 等. 基于模型预测控制理论的风电场自动电压控制[J]. 电力系统自动化, 2015, 39(7): 59-67. Xu Fengda, Guo Qinglai, Sun Hongbin, et al.Automatic voltage control of wind farms based on model predictive control theory[J]. Automation of Electric Power Systems, 2015, 39(7): 59-67. [8] 余达, 武志韬, 陈子文, 等. 基于改进近端策略优化算法的双馈风电场站无功裕度优化研究[J/OL].发电技术,1-10[2025-07-01].http://kns.cnki.net/kcms/ detail/33.1405.TK.20250318.1816.002.html. Yu Da, Wu Zhitao, Chen Ziwen. Research on reactive power margin optimization of doubly-fed induction generator wind farm based on improved proximal policy optimization algorithm[J/OL]. Power Generation Technology, 1-10[2025-07-01].http://kns.cnki.net/kcms/ detail/33.1405.TK. 20250318.1816.002.html. [9] 郭嘉庆, 乔颖, 鲁宗相, 等. 风电场群无功不均衡/无功环流抑制研究[J]. 电网技术, 2023, 47(1): 109-121. Guo Jiaqing, Qiao Ying, Lu Zongxiang, et al.Reactive power unbalance/circulation suppression for wind farm group[J]. Power System Technology, 2023, 47(1): 109-121. [10] 林洪, 唐人, 杨军, 等. 有源配电网改进下垂曲线无功控制策略研究[J]. 自动化仪表, 2024, 45(10): 54-59. Lin Hong, Tang Ren, Yang Jun, et al.Research on reactive power control strategy for improving sag curve in active distribution network[J]. Process Automation Instrumentation, 2024, 45(10): 54-59. [11] 王俊凯, 牟龙华, 刘鑫. 基于动态虚拟阻抗的多并联逆变器间环流抑制控制策略[J]. 电力自动化设备, 2021, 41(4): 94-100. Wang Junkai, Mu Longhua, Liu Xin.Control strategy based on dynamic virtual impedance to suppress circulating current between multiple parallel inverters[J]. Electric Power Automation Equipment, 2021, 41(4): 94-100. [12] 吴宇辉, 尚斌, 杨鹏飞, 等. 新能源集群无功环流抑制策略研究[J]. 内蒙古电力技术, 2023, 41(4): 13-19. Wu Yuhui, Shang Bin, Yang Pengfei, et al.Research on reactive circulating current suppression strategies for new energy clusters[J]. Inner Mongolia Electric Power, 2023, 41(4): 13-19. [13] 李生虎, 章怡帆, 于新钰, 等. 采用改进下垂控制和双层无功优化的风电场无功均衡分配研究[J]. 电力系统保护与控制, 2019, 47(13): 1-7. Li Shenghu, Zhang Yifan, Yu Xinyu, et al.Study on reactive power sharing of wind farms with improved droop control and bi-level reactive power optimi-zation[J]. Power System Protection and Control, 2019, 47(13): 1-7. [14] 杨浩, 苏文栋, 谷毅, 等. 面向耦合系统的交替方向滚动时域电压分层协同优化控制[J]. 电工技术学报, 2023, 38(21): 5846-5861. Yang Hao, Su Wendong, Gu Yi, et al.Voltage hierarchical cooperative control of coupled system using model predictive control and alternating direction method of multipliers[J]. Transactions of China Electrotechnical Society, 2023, 38(21): 5846-5861. [15] 林俐, 马笑寒, 丁文敏. 计及构网型储能电站的新能源基地无功协调优化控制[J]. 电力系统自动化, 2025, 49(1): 59-68. Lin Li, Ma Xiaohan, Ding Wenmin. coordinated optimal reactive power control of renewable energy base cons-idering grid-forming energy storage station[J]. Automa-tion of Electric Power Systems, 2025, 49(1): 59-68. [16] Kou Peng, Liang Deliang, Gao Rong, et al.Decentralized model predictive control of hybrid distribution transformers for voltage regulation in active distribution networks[J]. IEEE Transactions on Sustainable Energy, 2020, 11(4): 2189-2200. [17] Nguyen T T, Kim H M.Cluster-based predictive PCC voltage control of large-scale offshore wind farm[J]. IEEE Access, 2020, 9: 4630-4641. [18] 马庆, 邓长虹. 基于单/多智能体简化强化学习的电力系统无功电压控制[J]. 电工技术学报, 2024, 39(5): 1300-1312. Ma Qing, Deng Changhong.Single/multi agent simplified deep reinforcement learning based volt-var control of power system[J]. Transactions of China Electrotechnical Society, 2024, 39(5): 1300-1312. [19] 李鹏, 姜磊, 王加浩, 等. 基于深度强化学习的新能源配电网双时间尺度无功电压优化[J]. 中国电机工程学报, 2023, 43(16): 6255-6266. Li Peng, Jiang Lei, Wang Jiahao, et al.Optimization of dual-time scale reactive voltage for distribution network with renewable energy based on deep reinforcement learning[J]. Proceedings of the CSEE, 2023, 43(16): 6255-6266. [20] 蔡游明, 李征, 蔡旭. 计及控制时间窗内功率波动的风电场群无功电压分层优化控制[J]. 电工技术学报, 2019, 34(6): 1240-1250. Cai Youming, Li Zheng, Cai Xu.Voltage hierarchical optimal control of a wind farm cluster in account of voltage fluctuation in control time window[J]. Transactions of China Electrotechnical Society, 2019, 34(6): 1240-1250. [21] 刘承锡, 张兆毅, 赖秋频. 考虑风电功率短期波动的风电场无功快速跟踪优化[J]. 中国电机工程学报, 2023, 43(15): 5850-5863. Liu Chengxi, Zhang Zhaoyi, Lai Qiupin.Fast-tracking optimization of reactive power for wind farm considering short-term fluctuations of wind generations[J]. Proceedings of the CSEE, 2023, 43(15): 5850-5863. [22] 李鹏, 王加浩, 徐贤, 等. 面向新型电力系统潮流频繁波动的无功鲁棒分区方法[J]. 电力系统自动化, 2022, 46(11): 102-110. Li Peng, Wang Jiahao, Xu Xian, et al.Robust reactive power partitioning method for frequent power flow fluctuation in new power system[J]. Automation of Electric Power Systems, 2022, 46(11): 102-110. [23] 朱建华, 何卓林, 闫伟军, 等. 风电场自动电压控制中风机和静止无功发生器的无功分配研究[J]. 电气技术, 2022, 23(4): 31-36. Zhu Jianhua, He Zhuolin, Yan Weijun, et al.Research on reactive power distribution of wind turbine and static var generator in automatic voltage control of wind farm[J]. Electrical Engineering, 2022, 23(4): 31-36. [24] 张兆毅, 胡浩, 王子江, 等. 基于非线性仿射的风电场电压实时计算和优化方法[J]. 电工技术学报, 2024, 39(13): 3975-3989. Zhang Zhaoyi, Hu Hao, Wang Zijiang, et al.Real-time voltage calculation and optimization method for wind farms based on nonlinear affine transformation[J]. Transactions of China Electrotechnical Society, 2024, 39(13): 3975-3989.