Particle Motion under Typical Vibration Excitation of Live Operation Based on Energy Method
Wang Jian1, Qin Chengyi1, Zhang Jianmin1, Wu Yuyi2, Su Yi3
1. State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources North China Electric Power University Beijing 102206 China 2. China Electric Power Research Institute Beijing 100192 China 3. Guangxi Electric Power Research Institute Nanning 530000 China
Abstract:Gas insulated switchgear (GIS) faults occur frequently after live operation, and according to statistics, the faults after live operation account for 60% of the total. The strong shock vibration generated by GIS live operation not only produces metal contaminants, but also activates latent particles, which seriously affects the insulation safety of GIS. The physical effects generated by GIS live operation are complicated, mainly including shock vibration, overvoltage, residual voltage and other physical effects. The mechanism by which the particles inside the GIS are affected by switching operation is unknown and is extremely dangerous. The mechanism of switching operation on particles in GIS is unknown and extremely dangerous. In order to solve the problem that particles are prone to discharge after live operation, and to clarify the motion mechanism of spherical metal particles in GIS after impact vibration, this paper carries out the following work: firstly, we study the propagation process of vibration inside the cavity, and then we carry out the forced correction on the basis of the flexible boundary three-dimensional cylindrical vibration model, which improves the equivalence with the actual working conditions. The propagation form and the "ripple" propagation behavior of shock vibration in GIS are revealed, and it is clarified that the vibration wave is divided into P-wave and S-wave during the propagation process, the P-wave propagates faster than the S-wave, and the S-wave plays a major role in the jumping of the particles. And then the energy transfer process of the cavity and particles after being vibrated is analyzed, and the excitation effect of the shock vibration on the system is analyzed in the form of energy as a link. The energy transformation of the system after the vibration work is clarified, the cavity-particle kinetic energy transfer conservation model is constructed, and the activation conditions of the particles are defined with the help of the jumping field strength, and the activation criterion of the particles subjected to vibration is proposed. On the basis of the aforementioned research, the whole process model of particle motion under typical vibration excitation of live operation is established by considering the particle charge motion characteristics and collision random characteristics, and verified by experiments. On the basis of the validation, the correction considering the microscopic force is carried out, and the error is analyzed from the microscopic point of view. The model fully considers the influence of different particle sizes and materials on the particle dynamics, and is more equivalent to the actual working conditions than the method defined by the recovery coefficient. Finally, it is clarified that the vibration excitation can activate the motion of the particles, and the influencing factors of the motion behavior of the particles are explored. Combined with the propagation and attenuation characteristics of vibration, the criterion of critical activation distance of particles under charged working conditions is proposed, and the changes of critical activation distance of particles under different factors are calculated. The study shows that the critical activation distance increases logarithmically with the increase of voltage amplitude and vibration intensity. This study provides support for solving the problem that particles are very likely to cause discharge faults after GIS live operation.
王健, 秦诚意, 张建民, 吴昱怡, 苏毅. 基于能量法的带电操作典型振动激励下金属微粒运动模型[J]. 电工技术学报, 2025, 40(11): 3653-3666.
Wang Jian, Qin Chengyi, Zhang Jianmin, Wu Yuyi, Su Yi. Particle Motion under Typical Vibration Excitation of Live Operation Based on Energy Method. Transactions of China Electrotechnical Society, 2025, 40(11): 3653-3666.
[1] 豆龙江, 何玉灵, 万书亭, 等. 基于振动信号的高压断路器弹簧疲劳程度检测方法[J]. 电工技术学报, 2022, 37(24): 6420-6430. Dou Longjiang, He Yuling, Wan Shuting, et al.Detecting method of high voltage circuit breaker spring fatigue based on vibration signal[J]. Transactions of China Electrotechnical Society, 2022, 37(24): 6420-6430. [2] 汤广福, 庞辉, 贺之渊. 先进交直流输电技术在中国的发展与应用[J]. 中国电机工程学报, 2016, 36(7): 1760-1771. Tang Guangfu, Pang Hui, He Zhiyuan.R & D and application of advanced power transmission technology in China[J]. Proceedings of the CSEE, 2016, 36(7): 1760-1771. [3] 张连根, 路士杰, 李成榕, 等. GIS中线形和球形金属微粒的运动行为和危害性[J]. 电工技术学报, 2019, 34(20): 4217-4225. Zhang Liangen, Lu Shijie, Li Chengrong, et al.Motor behavior and hazard of spherical and linear particle in gas insulated switchgear[J]. Transactions of China Electrotechnical Society, 2019, 34(20): 4217-4225. [4] 李庆民, 薛乃凡, 王媛, 等. 交直流输电管道绝缘运行安全关键技术[J]. 中国电机工程学报, 2024, 44(4): 1629-1649. Li Qingmin, Xue Naifan, Wang Yuan, et al.Key technologies for operation safety of AC/DC gas insulated transmission lines[J]. Proceedings of the CSEE, 2024, 44(4): 1629-1649. [5] 梁芳蔚, 张长虹, 吕金壮, 等. 直流气体绝缘输电线路关键问题及装备研发现状综述[J]. 高压电器, 2023, 59(9): 1-11. Liang Fangwei, Zhang Changhong, Lyu Jinzhuang, et al.Review of key problems and development status of DC gas insulated transmission line[J]. High Voltage Apparatus, 2023, 59(9): 1-11. [6] 董曼玲, 臧春艳, 詹振宇, 等. GIL内部金属微粒问题研究进展[J]. 高压电器, 2024, 60(1): 1-14. Dong Manling, Zang Chunyan, Zhan Zhenyu, et al.Research progress on metal particle issues inside GIL[J]. High Voltage Apparatus, 2024, 60(1): 1-14. [7] Li Chuanyang, Lin Chuanjie, Yang Yong, et al.Novel HVDC spacers by adaptively controlling surface charges-part ii: experiment[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2018, 25(4): 1248-1258. [8] Cookson A H, Wooton R E.Movement of filamentary conduct-ing particles under AC voltages in high pressure gases[C]//Proceedings of the International High Voltage Symposium, Zurich, Switzerland, 1975: 416-420. [9] Cookson A H, Farish O, Sommerman G L. Effect of conducting particles on AC corona and breakdown in compressed SF6[J]. IEEE Transactions on Power Apparatus and Systems, 1972, PAS-91(4): 1329-1338. [10] Metwally I A, A-Rahim A A. Dynamic analysis of motion of spherical metallic particles in non-uniform electric field[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2002, 9(2): 282-293. [11] 王健, 李庆民, 李伯涛, 等. 考虑非弹性随机碰撞与SF6/N2混合气体影响的直流GIL球形金属微粒运动行为研究[J]. 中国电机工程学报, 2015, 35(15): 3971-3978. Wang Jian, Li Qingmin, Li Botao, et al.Motion analysis of spherical conducting particle in DC GIL considering the influence of inelastic random collisions and SF6/N2 gaseous mixture[J]. Proceedings of the CSEE, 2015, 35(15): 3971-3978. [12] 王健, 李庆民, 李伯涛, 等. 直流GIL中自由线形金属微粒的运动与放电特性[J]. 中国电机工程学报, 2016, 36(17): 4793-4801. Wang Jian, Li Qingmin, Li Botao, et al.Motion and discharge behavior of the free conducting wire-type particle within DC GIL[J]. Proceedings of the CSEE, 2016, 36(17): 4793-4801. [13] 王健. 直流GIL金属微粒的荷电运动机制与治理方法研究[D]. 北京: 华北电力大学, 2017. Wang Jian.Research on the moving mechanisms of charged metal particles in DC GIL and suppressing methods[D]. Beijing: North China Electric Power University, 2017. [14] 王健, 常亚楠, 王靖瑞, 等. 基于捕捉效用分析的直流GIL微粒陷阱设计与参数优化[J]. 中国电机工程学报, 2020, 40(15): 5050-5061. Wang Jian, Chang Yanan, Wang Jingrui, et al.Design and optimization of particle traps in DC GIL based on the capture effect analysis[J]. Proceedings of the CSEE, 2020, 40(15): 5050-5061. [15] 李晓昂, 李杰, 任静, 等. 冲击振动激励下GIS内自由金属微粒起跳特性[J]. 高电压技术, 2022, 48(5): 2005-2012. Li Xiaoang, Li Jie, Ren Jing, et al.Lift-off characteristics of free metal particles in GIS under shock vibration[J]. High Voltage Engineering, 2022, 48(5): 2005-2012. [16] 李杰, 李晓昂, 吕玉芳, 等. 正弦振动激励下GIS内自由金属微粒运动特性[J]. 电工技术学报, 2021, 36(21): 4580-4589, 4597. Li Jie, Li Xiaoang, Lü Yufang, et al.Motion characteristics of free metal particles in GIS under sinusoidal vibration[J]. Transactions of China Electro-technical Society, 2021, 36(21): 4580-4589, 4597. [17] 胡新文, 李晓昂, 王舒啸, 等. 冲击振动激励下GIS内自由金属微粒运动及其诱发间隙击穿特性[J]. 高电压技术, 2024, 50(1): 339-347. Hu Xinwen, Li Xiaoang, Wang Shuxiao, et al.Free metal particles movement and its induced gap breakdown characteristics in GIS under impact vibration[J]. High Voltage Engineering, 2024, 50(1): 339-347. [18] 宋颜峰, 郑中原, 于金山, 等. 机-电联合作用下SF6气体中金属微粒运动行为与局部放电特性研究[J]. 西安交通大学学报, 2023, 57(7): 74-83. Song Yanfeng, Zheng Zhongyuan, Yu Jinshan, et al.Study on the motion behavior and partial discharge characteristics of metal particles in SF6 gas under the combined action of mechanical and electrical[J]. Journal of Xi’an Jiaotong University, 2023, 57(7): 74-83. [19] 王扬程, 关向雨, 陈志鹏, 等. 基于结构声强法的GIS机械振动传递特性[J]. 电工技术学报, 2024, 39(16): 5162-5171. Wang Yangcheng, Guan Xiangyu, Chen Zhipeng, et al.Energy transfer characteristics of GIS mechanical vibration based on structural intensity method[J]. Transactions of China Electrotechnical Society, 2024, 39(16): 5162-5171. [20] Leissa A W.Vibration of Shells[M]. Washington: Scientific and Technical Information Office, National Aeronautics and Space Administration, 1973. [21] Qatu M S.Vibration of Laminated Shells and Plates[M]. Amsterdam: Elsevier, 2004. [22] Lam K Y, Loy C T.Analysis of rotating laminated cylindrical shells by different thin shell theories[J]. Journal of Sound and Vibration, 1995, 186(1): 23-35. [23] 代路. 复杂边界条件圆柱壳耦合结构动力学特性及声辐射研究[D]. 哈尔滨: 哈尔滨工程大学, 2013. Dai Lu.Study on dynamic behavior and acoustic radiation for the coupling structure of cylindrical shells with complex boundary conditions[D]. Harbin: Harbin Engineering University, 2013. [24] 杜功焕, 朱哲民, 龚秀芬. 声学基础[M]. 3版. 南京: 南京大学出版社, 2012. [25] 赵翼飞. 基于机械波的结构系统冲击动力学问题研究[D]. 沈阳: 东北大学, 2019. Zhao Yifei.Research on problems regarding impact dynamics of structural systems based on mechanical waves[D]. Shenyang: Northeastern University, 2019. [26] 刘晨. 核电站管道振动检测系统设计[D]. 西安: 西安理工大学, 2023. Liu Chen.Design of pipeline vibration detection system for nuclear power plant[D]. Xi’an: Xi’an University of Technology, 2023. [27] Hunt K H, Crossley F R E. Coefficient of restitution interpreted as damping in vibroimpact[J]. Journal of Applied Mechanics, 1975, 42(2): 440-445. [28] Bhushan B.Contact mechanics of rough surfaces in tribology: multiple asperity contact[J]. Tribology Letters, 1998, 4(1): 1-35. [29] Liu Cheng, Tian Qiang, Hu Haiyan.Dynamics and control of a spatial rigid-flexible multibody system with multiple cylindrical clearance joints[J]. Mechanism and Machine Theory, 2012, 52: 106-129. [30] Rodrigues da Silva M, Marques F, Tavares da Silva M, et al. A compendium of contact force models inspired by Hunt and Crossley’s cornerstone work[J]. Mechanism and Machine Theory, 2022, 167: 104501. [31] Carvalho A S, Martins J M.Exact restitution and generalizations for the Hunt-Crossley contact model[J]. Mechanism and Machine Theory, 2019, 139: 174-194. [32] Corral E, Moreno R G, García M J G, et al. Nonlinear phenomena of contact in multibody systems dynamics: a review[J]. Nonlinear Dynamics, 2021, 104(2): 1269-1295. [33] Khan Y, Okabe S, Suehiro J, et al.Proposal for new particle deactivation methods in GIS[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2005, 12(1): 147-157. [34] 张宁, 王鹏, 刘智捷, 等. 流-电耦合场中金属颗粒群的荷电计算及影响因素研究[J]. 电工技术学报, 2024, 39(17): 5534-5544. Zhang Ning, Wang Peng, Liu Zhijie, et al.Study on the charge calculation and influencing factors of metal particle groups in fluid-electric coupling field[J]. Transactions of China Electrotechnical Society, 2024, 39(17): 5534-5544. [35] 耿秋钰, 胡智莹, 李庆民, 等. 特高压交流GIS/GIL拔孔型陷阱优化设计与协同布置方法[J]. 电工技术学报, 2023, 38(23): 6539-6552. Geng Qiuyu, Hu Zhiying, Li Qingmin, et al.Optimal design and synergism arrangement methodology of convex-shaped traps for ultra high voltage AC GIS/GIL applications[J]. Transactions of China Electrotechnical Society, 2023, 38(23): 6539-6552. [36] 王健, 平安, 常亚楠, 等. 直流应力下主动式微粒抑制方法的动态配合研究[J]. 电工技术学报, 2023, 38(10): 2794-2805, 2831. Wang Jian, Ping An, Chang Yanan, et al.Research on dynamic coordination of active particles suppression methods under DC stress[J]. Transactions of China Electrotechnical Society, 2023, 38(10): 2794-2805, 2831. [37] 胡智莹, 耿秋钰, 魏来, 等. 直流GIS/GIL中驱赶电极与微粒陷阱的协同抑制作用及优化设计方法[J]. 电工技术学报, 2023, 38(12): 3338-3349. Hu Zhiying, Geng Qiuyu, Wei Lai, et al.Synergistic inhibitory effect and optimal design method of driving electrode and particle trap in DC GIS/GIL[J]. Transactions of China Electrotechnical Society, 2023, 38(12): 3338-3349. [38] 柳冠青. 范德华力和静电力下的细颗粒离散动力学研究[D]. 北京: 清华大学, 2011. Liu Guanqing.Discrete element methods of fine particle dynamics in presence of van der Waals and electrostatic forces[D]. Beijing: Tsinghua University, 2011. [39] 崔燕. 微米级固体颗粒的分形及其与界面间粘附力的关系研究[D]. 长沙: 中南大学, 2011. Cui Yan.Investigation on the relationship between adhesion force and the fractal characteristics of solid micro-particle[D]. Changsha: Central South University, 2011. [40] 梁瑞雪, 刘衡, 胡琦, 等. GIS/GIL内微米级金属粉尘动力学行为与诱发放电特性研究进展[J]. 中国电机工程学报, 2020, 40(22): 7153-7166. Liang Ruixue, Liu Heng, Hu Qi, et al.Research advances in the kinetic behavior and induced discharge characteristics of micron metal dust within GIS/GIL[J]. Proceedings of the CSEE, 2020, 40(22): 7153-7166. [41] 薛乃凡, 李庆民, 刘智鹏, 等. 微纳粉尘运动行为与微弱放电探测技术研究进展[J]. 电工技术学报, 2022, 37(13): 3380-3392. Xue Naifan, Li Qingmin, Liu Zhipeng, et al.Research advances of the detection technology for kinetic behavior and weak discharge of the micro-nano dust[J]. Transactions of China Electrotechnical Society, 2022, 37(13): 3380-3392.