AC Arc Furnace Model Based on Coupling of Electrical and Physical Parameters
Xu Yuncong1, Zhang Yi1, Lin Caihua2, Liu Bijie3
1. School of Electrical Engineering and Automation Fuzhou University Fuzhou 350108 China; 2. Fujian Electrical Power Research Institute Fuzhou 350007 China; 3. State Grid Ningde Electric Power Supply Co. Ltd Ningde 352100 China
Abstract:Accurate modeling of electric arc furnaces (EAF) is important for studying the impacton power quality of EAF and developing relevant management measures in the power grid. However, the existing research mainly treats the electric arc as a nonlinear electrical component, neglecting the coupling of electric and physical parameters in the electric arc. Thus, reflecting the electro thermal physical nature of the arc is challenging, resulting in a deficiency in simulation accuracy. This paper proposes an improved AC arc furnace model. The voltage and current of the arc are defined as electrical characteristics, while the temperature and pressure that characterize the arc state are defined as physical parameters. The coupling mechanism between the electrical and physical parameters is determined based on the electronic continuity equation, Ohm's Law, the magnetic compression force balance equation, and the instantaneous energy balance equation. A general model is constructed that reflects harmonics and voltage fluctuations of AC electric arc furnaces more accurately. Its mathematical expressions are given as follows: $ \left\{\begin{array}{l} \frac{\mathrm{d} n_{\mathrm{e}}}{\mathrm{d} t} \cong \frac{A p}{e}|i F(L)| \exp \left(-\frac{B^{\prime} p e n_{\mathrm{e}} \mu_{\mathrm{e}}}{|i F(L)|}\right)-\frac{7.896 \times 10^{-5} n_{\mathrm{e}}^{2}}{T} \\ u=\int_{0}^{L} E \mathrm{~d} z=\frac{i L F(L)}{e \mu_{\mathrm{e}} n_{\mathrm{e}}} \end{array}\right.$ (A.1) $ \left\{\begin{array}{l} \frac{\partial T}{\partial t}=\frac{[i F(L)]^{2}}{\rho c e n_{\mathrm{e}} \mu_{\mathrm{e}}} b-b_{1} \frac{p}{\rho c T} \mathrm{e}^{-\frac{E_{\mathrm{m}}}{b_{2} k T}} \\ p=[i F(L)]^{2} \mu_{0} \frac{r^{2}}{4}+p_{0} \end{array}\right.$ (A.2) For the unknown parameters in the models: A, B’, rc; and L0 can be estimated and determined through mechanistic analysis; b, b1, and b2 can be identified using arc furnace transformer parameters and existing arc temperature-related research to construct an arc temperature curve. The data amount is reduced, making it more practical for engineering applications. Measured data from two steel mills’ 50t and 55t electric arc furnaces are used to verify the model. The results indicate that the simulated AC arc temperature varies with the arc current, exhibiting an alternating characteristic and a double-frequency relationship. The thermal inertia of the arc induces a lad in the peak temperature relative to the peak current. The pressure in the arc column fluctuates around atmospheric pressure. Furthermore, considering the arc’s electrical-physical coupling characteristics, the simulation accuracy of the electrical characteristics, such as harmonic voltage, harmonic current, and voltage fluctuations, has been further improved compared to existing methods.
徐云聪, 张逸, 林才华, 刘必杰. 基于电气特性-物理参数耦合的交流电弧炉模型[J]. 电工技术学报, 2024, 39(6): 1643-1655.
Xu Yuncong, Zhang Yi, Lin Caihua, Liu Bijie. AC Arc Furnace Model Based on Coupling of Electrical and Physical Parameters. Transactions of China Electrotechnical Society, 2024, 39(6): 1643-1655.
[1] 朱荣, 魏光升, 张洪金. 近零碳排电弧炉炼钢工艺技术研究及展望[J]. 钢铁, 2022, 57(10): 1-9. Zhu Rong, Wei Guangsheng, Zhang Hongjin.Research and prospect of EAF steelmaking with near-zero carbon emissions[J]. Iron and Steel, 2022, 57(10): 1-9. [2] Collantes Bellido R, Gomez T, Identification and modelling of a three phase arc furnace for voltage disturbance simulation[J].IEEE Transactions on Power Delivery, 1997, 12(4): 1812-1817. [3] 林海雪. 电弧炉的有功功率冲击对发电机组的影响[J]. 中国电机工程学报, 2014, 34(增刊1): 232-238. Lin Haixue.Influence of active power impact caused by EAF on the generating sets[J]. Proceedings of the CSEE, 2014, 34(S1): 232-238. [4] 林才华, 张逸, 黄道姗, 等. 低频间谐波检测分析与治理技术研究综述[J]. 供用电, 2019, 36(9): 59-65. Lin Caihua, Zhang Yi, Huang Daoshang, et al.A summary of research on low frequency inter-harmonic detection analysis and governance technology[J]. Distribution and Utilization, 2019, 36(9): 59-65. [5] 王晶, 束洪春, 林敏, 等. 用于动态电能质量分析的交流电弧炉的建模与仿真[J]. 电工技术学报, 2003, 18(3): 53-58. Wang Jing, Shu Hongchun, Lin Ming, et al.Modeling and simulation of AC arc furnace for dynamic power quality studies[J]. Transactions of China Electro- technical Society, 2003, 18(3): 53-58. [6] 王育飞, 潘艳霞, 姜建国. 基于MATLAB的交流电弧炉随机模型与仿真[J]. 高电压技术, 2008, 34(5): 973-977. Wang Yufei, Pan Yanxia, Jiang Jianguo.Stochastic model of AC electric arc furnace based on MATLAB[J]. High Voltage Engineering, 2008, 34(5): 973-977. [7] 王琰, 毛志忠, 李妍, 等. 用于电压波动研究的交流电弧炉电弧模型[J]. 电网技术, 2010, 34(1): 36-40. Wang Yan, Mao Zhizhong, Li Yan, et al.An electric arc model of AC electric arc furnace for research on voltage fluctuation[J]. Power System Technology, 2010, 34(1): 36-40. [8] KingP E, Ochs T L, Hartman A D. Chaotic responses in electric arc furnaces[J]. Journal of Applied Physics, 1994, 76(4): 2059-2065. [9] O'Neill-Carrillo E, Heydt GT, Kostelich EJ, et al. Nonlinear deterministic modeling of highly varying loads[J]. IEEE Transactions on Power Delivery, 1999, 14(2): 537-542. [10] 宁元中, 梁颖, 吴昊. 电弧炉的混合仿真模型[J]. 四川大学学报(工程科学版), 2005, 37(1): 85-89. Ning Yuanzhong, Liang Ying, Wu Hao.Circuit model of arc furnace for mixed-discipline simulation[J]. Advanced Engineering Sciences, 2005, 37(1): 85-89. [11] Ozgun O, Abur A.Flicker study using a novel arc furnace model[J]. IEEE Transactions on Power Delivery, 2002, 17(4): 1158-1163. [12] 王育飞, 姜建国. 用于电能质量研究的新型交流电弧炉混沌模型[J]. 中国电机工程学报, 2008, 28(10): 106-110. Wang Yufei, Jiang Jianguo.A novel chaotic model of AC electric arc furnace for power quality study[J]. Proceedings of the CSEE, 2008, 28(10): 106-110. [13] 林才华, 张逸, 邵振国, 等. 用于低频非平稳间谐波研究的超高功率电弧炉模型[J]. 中国电力, 2020, 53(11): 1-8. Lin Caihua, Zhang Yi, Shao Zhenguo, et al.An ultra-high-power electric arc furnace model for low- frequency non-stationary inter-harmonics studies[J]. Electric Power, 2020, 53(11): 1-8. [14] 祁碧茹, 肖湘宁. 用于电压波动研究的电弧炉的模型和仿真[J]. 电工技术学报, 2000, 15(3): 31-35. Qi Biru, Xiao Xiangning.Modeling and simulation of an arc furnace for voltage fluctuation investigation[J]. Transactions of China Electrotechnical Society, 2000, 15(3): 31-35. [15] 刘小河, 程少庚, 苏文成. 电弧炉电气系统的谐波分析研究[J]. 电工技术学报, 1994, 9(2): 21-26, 10. Liu Xiaohe, Cheng Shaogeng, Su Wencheng.Harmonic analysis of electric systems of arc furnace[J]. Transactions of China Electrotechnical Society, 1994, 9(2): 21-26, 10. [16] 张逸, 林才华, 邵振国, 等. 基于电子连续性方程的新型交流电弧炉通用模型[J]. 中国电机工程学报, 2021, 41(21): 7425-7434. Zhang Yi, Lin Caihua, Shao Zhenguo, et al.A novel general model of AC electric arc furnace based on electron continuity equation[J]. Proceedings of the CSEE, 2021, 41(21): 7425-7434. [17] 曹振. 电弧炉电弧模型的研究[D]. 辽宁: 东北大学, 2009. [18] Underwood T, Roy S, Glaz B.Physics based lumped element circuit model for nanosecond pulsed dielectric barrier discharges[J]. Journal of Applied Physics, 2013, 113(8): 083301. [19] 徐龙, 李秋菊, 马文会, 等. 三维非轴对称直流电弧射流过程数值模拟[J]. 昆明理工大学学报(自然科学版), 2021, 46(4): 18-26. Xu Long, Li Qiuju, Ma Wenhui, et al.Numerical simulation of 3D non-axisymmetric DC arc jet process[J]. Journal of Kunming University of Science and Technology(Natural Sciences), 2021, 46(4): 18-26. [20] 过增元, 赵文华. 电弧和热等离子体[M]. 北京: 科学出版社, 1986. [21] Lowke J J.Simple theory of free-burning arcs[J]. Journal of Physics D: Applied Physics, 1979, 12(11): 1873-1886. [22] 赵永秀, 刘树林, 马一博. 爆炸性试验电感电路分断放电特性分析与建模[J]. 煤炭学报, 2015, 40(7): 1698-1704. Zhao Yongxiu, Liu Shulin, Ma Yibo.Analysis and modeling of inductor-disconnected-discharged charac- teristics based on explosive test[J]. Journal of China Coal Society, 2015, 40(7): 1698-1704. [23] Abid F, Niayesh K, Jonsson E, et al.Arc voltage characteristics in ultrahigh-pressure nitrogen including supercritical region[J]. IEEE Transactions on Plasma Science, 2018, 46(1): 187-193. [24] Latham D J.A channel model for long arcs in air[J]. The Physics of Fluids, 1980, 23(8): 1710. [25] 于丰, 毛志忠. 电弧炉系统电弧模型的建立与参数辨识[J]. 东北大学学报(自然科学版), 2013, 34(2): 178-181. Yu Feng, Ma Zhizhong.An arc model for arc furnace system and parameter identification[J]. Journal of Northeastern University (Natural Science), 2013, 34(2): 178-181. [26] 王其平, 电器电弧理论[M]. 北京: 机械工业出版社, 1991. [27] 姚聪林, 朱红春, 姜周华, 等. 电弧炉内长电弧等离子体的数值模拟[J]. 工程科学学报, 2020, 42(增刊1): 60-67. Yao Conglin, Zhu Hongchun, Jiang Zhouhua, et al.Numerical simulation of a long arc plasma in an electric arc furnace[J]. Chinese Journal of Engin- eering, 2020, 42(S1): 60-67. [28] 王丰华. 电弧炉建模研究及其应用[D]. 上海: 上海交通大学, 2006. [29] Xue J K, Shen B.A novel swarm intelligence optimization approach: sparrow search algorithm[J]. Systems Science and Control Engineering, 2020, 8(1): 22-34. [30] Zhang C L, Ding S F.A stochastic configuration network based on chaotic sparrow search algorithm[J]. Knowledge-Based Systems, 2020, 8(1): 22-34. [31] 薛建凯. 一种新型的群智能优化技术的研究与应用[D]. 上海: 东华大学, 2020. [32] 李婕, 杨淑英, 谢震, 等. 基于有效信息迭代快速粒子群优化算法的永磁同步电机参数在线辨识[J]. 电工技术学报, 2022, 37(18): 4604-4613. Li Jie, Yang Shuying, Xie Zhen, et al.Online para- meter identification of permanent magnet syn- chronous motor based on fast particle swarm optimization algorithm with effective information iterated[J]. Transactions of China Electrotechnical Society, 2022, 37(18): 4604-4613. [33] 刘廷章, 张子恒. 基于循环迭代粒子群算法对电动汽车无线充电系统的联合参数在线辨识[J]. 电工技术学报, 2022, 37(18): 4548-4564. Liu Tingzhang, Zhang Ziheng.Online identification of joint parameters of electric vehicle wireless charging system based on loop-iteration particle swarm optimization[J]. Transactions of China Elec- trotechnical Society, 2022, 37(18): 4548-4564. [34] 葛磊蛟, 赵康, 孙永辉, 等. 基于孪生网络和长短时记忆网络结合的配电网短期负荷预测[J]. 电力系统自动化, 2021, 45(23): 41-50. Ge Leijiao, Zhao Kang, Sun Yonghui, et al.Short- term load forecasting of distribution network based on combination of siamese network and long short-term memory network[J]. Automation of Electric Power System, 2021, 45(23): 41-50. [35] Bowman B, Edels H.Radial temperature measure- ments of alternating current arcs[J]. Journal of Physics D: Applied Physics, 1969, 2(1): 53-63. [36] 贾静然, 段晓波, 卢锦玲, 等. 变压器的谐波传递特性研究[J]. 中国电力, 2017, 50(1): 92-96, 157. Jia Jingran, Duan Xiaobo, Lu Jinling, et al.Research on harmonic transfer characteristics of transformer[J]. Electric Power, 2017, 50(1): 92-96, 157. [37] 胡雪凯, 张乾, 田广, 等. 双绕组变压器谐波传递特性研究[J]. 河北电力技术, 2021, 40(3): 62-66,71. Hu Xuekai, Zhang Qian, Tian Guang, et al.Research on harmonic transfer characteristics of double winding transformer[J]. Heibei Electric Power, 2021, 40(3): 62-66, 71.