电工技术学报  2024, Vol. 39 Issue (24): 7674-7687    DOI: 10.19595/j.cnki.1000-6753.tces.231866
电工理论 |
阵列式无线电能传输系统自适应区域划分定位策略
闻枫1, 王磊1, 张翔2, 谭林林3, 方鑫4
1.南京理工大学自动化学院 南京 210014;
2.上海机电工程研究所 上海 201109;
3.东南大学电气工程学院 南京 210096;
4.国网江苏省电力公司电力科学研究院 南京 211103
Adaptive Region Division Positioning Strategy for Array-Based Wireless Power Transfer System
Wen Feng1, Wang Lei1, Zhang Xiang2, Tan Linlin3, Fang Xin4
1. School of Automation Nanjing University of Science and Technology Nanjing 210014 China;
2. Shanghai Institute of Mechanical and Electrical Engineering Shanghai 201109 China;
3. School of Electrical Engineering Southeast University Nanjing 210096 China;
4. State Grid Jiangsu Electric Power Company Electric Power Science Research Institute Nanjing 211103 China
全文: PDF (4652 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 无线电能传输系统中,发射线圈和接收线圈间不可预知的偏移会显著地降低系统的传输性能。通过阵列式系统的精确定位和功率定向,能够有效地缓解偏移带来的不利影响。该文提出一种基于自适应区域划分的平面阵列式无线电能传输系统接收线圈定位策略。该策略不需要额外的检测线圈或位置传感器,仅通过建立发射线圈电流与接收线圈坐标之间的关系模型,就能推导出坐标计算公式。根据预设定位精度,对随机放置接收线圈的区域进行划分,并动态优化各区域的最佳参考点。通过比较接收线圈在待测定位点与最佳参考点时发射线圈电流的变化量,确定相应坐标的变化量,从而实现对接收线圈的精确定位。通过仿真和实验验证了所提方法的有效性。实验结果表明,在329 mm×329 mm的区域内,平均定位误差为9.98 mm,满足预设的10 mm定位精度。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
闻枫
王磊
张翔
谭林林
方鑫
关键词 无线电能传输平面阵列式线圈线圈定位区域划分参考点    
Abstract:Unforeseen misalignment between transmitter and receiver coils significantly impacts the performance of wireless power transfer (WPT) systems. The array WPT system can extend the effective charging area and reduce the influence of misalignment by optimizing the power orientation of the receiver coil. Accurate positioning of the receiver coil is crucial for achieving optimal power orientation in array WPT systems. Therefore, this paper introduces a region division-based receiver positioning strategy for planar array WPT systems without additional detecting coil or position sensors. The receiver coil can be precisely positioned by analyzing the current of the transmitter array.
A 2×2 array coil is employed as the research subject, requiring only 4 transmitter coils for positioning purposes. The paper demonstrates the theoretical derivation, simulation validation, and experimental results of the precise positioning of the receiver coil. A minimum cross-coupling design of the transmitter coil is carried out. Subsequently, the paper derives a coordinate calculation formula by fitting the relationship between the current of the transmitter coils and the coordinates of the receiver coil. This paper divides the region with randomly placed receiver coil into regions based on preset positioning accuracy. The optimal reference points for each region are dynamically optimized to ensure that positioning accuracy aligns with preset requirements. Finally, by analyzing changes in the transmitter coil current between the undetermined point and the optimal reference point of the receiver coil, the paper calculates the corresponding coordinate changes.
Changes in the load resistance can induce the full-bridge rectifier on the output side to transition into the discontinuous conduction mode, resulting in a surge in harmonic current content in the receiver coil. This paper theoretically analyzes the impact of harmonics at the receiver coil on the transmitter coil current after the full-bridge rectifier enters the discontinuous conduction mode. In continuous conduction mode, the accuracy of the proposed positioning strategy is predominantly influenced by the equivalent resistance of the full-bridge rectifier. Through the parallel small capacitance method, experiments validate that the transmitter coil current remains consistent irrespective of the full-bridge rectifier. Consequently, maintaining equivalent load consistency ensures the positioning accuracy of the proposed strategy, thereby expanding its application scope.
The experimental results show an average positioning error of 9.98 mm within the 329 mm×329 mm area, satisfying the preset positioning accuracy criterion of 10 mm. Moreover, compared to existing positioning strategies in wireless power transfer systems, the proposed approach offers distinct advantages of positioning accuracy and the necessity for additional devices.
Key wordsWireless power transfer    planar coil array    coil positioning    region division    reference point   
收稿日期: 2023-11-28     
PACS: TM724  
基金资助:国家自然科学基金(52307205)、江苏省自然科学基金(BK20221491)和中国博士后科学基金(2022M711626)资助项目
通讯作者: 闻 枫 男,1990年生,博士,副研究员,研究方向为无线电能传输。E-mail: wen@njust.edu.cn   
作者简介: 王 磊 男,1999年生,硕士研究生,研究方向为无线电能传输。E-mail: 121110223261@njust.edu.cn
引用本文:   
闻枫, 王磊, 张翔, 谭林林, 方鑫. 阵列式无线电能传输系统自适应区域划分定位策略[J]. 电工技术学报, 2024, 39(24): 7674-7687. Wen Feng, Wang Lei, Zhang Xiang, Tan Linlin, Fang Xin. Adaptive Region Division Positioning Strategy for Array-Based Wireless Power Transfer System. Transactions of China Electrotechnical Society, 2024, 39(24): 7674-7687.
链接本文:  
https://dgjsxb.ces-transaction.com/CN/10.19595/j.cnki.1000-6753.tces.231866          https://dgjsxb.ces-transaction.com/CN/Y2024/V39/I24/7674