Research on Subsynchronous/Supersynchronous Oscillation Parameter Identification Based on Fundamental Synchrophasor: Spectrum Characteristics and Essential Issues
Zhang Fang, Li Jiaxin, Shi Jingshu
School of Electrical Engineering Beijing Jiaotong University Beijing 100044 China
Abstract:Subsynchronous oscillations (SSO) caused by considerable renewable generation and power electronic equipment seriously affect the stability of power systems. The parameter identification of sub/supersynchronous oscillations based on fundamental synchrophasors, which are provided by the wide-area measurement system (WAMS) and phasor measurement units (PMU), has the core advantages of wide-area synchronization and high refresh rate. These advantages will enhance the dynamic monitoring of sub/supersynchronous oscillations significantly. Based on the complex spectrum characteristics of the fundamental synchrophasors under sub/supersynchronous oscillations, this paper summarizes and analyzes the parameter identification characteristics and essential issues of the existing parameter identification techniques for sub/supersynchronous oscillations. First, the identified frequency range, the coupling characteristics of each component, and the phase reversal characteristics are analyzed according to the spectrum of synchrophasors. Then, the essential issues of the parameter identification are analyzed, including the spectrum leakage problem, the decoupling problems of the coupled relationship of the oscillational component and the coupled relationship of the fundamental component, respectively. Focusing on the spectrum-based techniques, three essential difficulties in solving the above problems are concluded and analyzed: the problem of effectively identifying the supersynchronous component considering the coupled relationship between the sub/supersynchronous components, the adaptability of parameter identification under different synchrophasor refresh frequencies, and the issue of dealing with spectrum leakages to shorten the data window. Thus, this paper summarizes the corresponding solutions and looks forward to the possible technological breakthroughs in the future. The results of simulation data and actual PMU data in different cases show that in the case of a single subsynchronous oscillation component, a couple of sub/supersynchronous oscillation components, and multiple couples of sub/supersynchronous oscillation components, spectrum-based techniques can effectively identify parameters using a sampling frequency of 100 Hz or under a given applicable range using a sampling frequency of 50 Hz. The following conclusions can be drawn: (1) The sub/super-synchronous oscillation parameter identification with synchrophasors is affected by the synchrophasor sampling frequency (i.e., the reporting rate), and the identifiable frequency range conforms to the sampling theorem with complex numbers. Specifically, using synchrophasors with a sampling frequency of 100 Hz can identify the parameters of all sub/supersynchronous components without additional information; When the sampling frequency of synchrophasors is 50 Hz, additional conditions are needed to distinguish the wrong results to identify the sub/supersynchronous oscillation parameters. (2) The most essential problem of sub/supersynchronous oscillation parameter identification based on synchrophasors is how to use a shorter synchrophasor sequence to achieve high-precision parameter identification, which may also be one of the breakthroughs in future parameter identification techniques. (3)The influence of the frequency coupled relationship between the sub/supersynchronous oscillations on the parameter identification needs to be considered. The coupled relationship between the sub/supersynchronous components is the coupling of the positive/negative frequencies of the oscillation rather than the mutual spectrum leakage, which is completely different from the influence between the fundamental component and the sub/supersynchronous component. (4) The advantages of the spectrum-based techniques are simple with low computational complexity. The spectrum results are especially suitable for the case of multiple pairs of oscillational components. However, the DFT-based methods need to approximate the spectrum leakage, which makes it difficult to further shorten the data window even if a better window function is used, and the non-DFT-based methods may make a breakthrough in this problem. (5) The problem of data loss and bad data in the synchrophasor sequence may exist in practical applications and needs to be considered. The existing methods rely on the continuity of the synchronous phasor sequence without an in-depth study of the above problems, and it will be another breakthrough point in the practical application of the sub/supersynchronous oscillation parameter identification method based on the synchronous phasor.
张放, 李佳欣, 史静舒. 基于基波同步相量的次/超同步振荡参数辨识探究:频谱特性和关键问题[J]. 电工技术学报, 2024, 39(19): 6018-6038.
Zhang Fang, Li Jiaxin, Shi Jingshu. Research on Subsynchronous/Supersynchronous Oscillation Parameter Identification Based on Fundamental Synchrophasor: Spectrum Characteristics and Essential Issues. Transactions of China Electrotechnical Society, 2024, 39(19): 6018-6038.
[1] 谢小荣, 贺静波, 毛航银, 等. “双高”电力系统稳定性的新问题及分类探讨[J]. 中国电机工程学报, 2021, 41(2): 461-475. Xie Xiaorong, He Jingbo, Mao Hangyin, et al.New issues and classification of power system stability with high shares of renewables and power electronics[J]. Proceedings of the CSEE, 2021, 41(2): 461-475. [2] 占颖, 吴琛, 谢小荣, 等. 风电并网系统次同步振荡的频域模式分析[J]. 电力系统自动化, 2020, 44(18): 90-97. Zhan Ying, Wu Chen, Xie Xiaorong, et al.Frequency domain modal analysis of subsynchronous oscillation in grid-connected wind power system[J]. Automation of Electric Power Systems, 2020, 44(18): 90-97. [3] 占颖, 谢小荣, 柴炜, 等. 风电次/超同步振荡的安全域分析[J]. 中国电机工程学报, 2022, 42(23): 8446-8454. Zhan Ying, Xie Xiaorong, Chai Wei, et al.Analyzing the security region of sub/super-synchronous oscillation in wind power integrated systems[J]. Proceedings of the CSEE, 2022, 42(23): 8446-8454. [4] 肖湘宁, 罗超, 廖坤玉. 新能源电力系统次同步振荡问题研究综述[J]. 电工技术学报, 2017, 32(6): 85-97. Xiao Xiangning, Luo Chao, Liao Kunyu.Review of the research on subsynchronous oscillation issues in electric power system with renewable energy sources[J]. Transactions of China Electrotechnical Society, 2017, 32(6): 85-97. [5] 李明节, 于钊, 许涛, 等. 新能源并网系统引发的复杂振荡问题及其对策研究[J]. 电网技术, 2017, 41(4): 1035-1042. Li Mingjie, Yu Zhao, Xu Tao, et al.Study of complex oscillation caused by renewable energy integration and its solution[J]. Power System Technology, 2017, 41(4): 1035-1042. [6] 马宁宁, 谢小荣, 亢朋朋, 等. 高比例风电并网系统次同步振荡的广域监测与分析[J]. 中国电机工程学报, 2021, 41(1): 65-74, 398. Ma Ningning, Xie Xiaorong, Kang Pengpeng, et al.Wide-area monitoring and analysis of subsynchronous oscillation in power systems with high-penetration of wind power[J]. Proceedings of the CSEE, 2021, 41(1): 65-74, 398. [7] 谢小荣, 刘华坤, 贺静波, 等. 电力系统新型振荡问题浅析[J]. 中国电机工程学报, 2018, 38(10): 2821-2828, 3133. Xie Xiaorong, Liu Huakun, He Jingbo, et al.On new oscillation issues of power systems[J]. Proceedings of the CSEE, 2018, 38(10): 2821-2828, 3133. [8] Shair J, Xie Xiaorong, Yang Jianjun, et al.Adaptive damping control of subsynchronous oscillation in DFIG-based wind farms connected to series-compensated network[J]. IEEE Transactions on Power Delivery, 2022, 37(2): 1036-1049. [9] 张路, 陈军, 赵启, 等. 新疆电网次同步振荡控制系统及其测试方法研究[J]. 电气技术, 2022, 23(12): 31-37. Zhang Lu, Chen Jun, Zhao Qi, et al.Research on sub-synchronous oscillation control system for Xinjiang power grid and its test method[J]. Electrical Engineering, 2022, 23(12): 31-37. [10] 邵冰冰, 赵峥, 肖琪, 等. 多直驱风机经柔直并网系统相近次同步振荡模式参与因子的弱鲁棒性分析[J]. 电工技术学报, 2023, 38(3): 754-769. Shao Bingbing, Zhao Zheng, Xiao Qi, et al.Weak robustness analysis of close subsynchronous oscillation modes’ participation factors in multiple direct-drive wind turbines with the VSC-HVDC system[J]. Transactions of China Electrotechnical Society, 2023, 38(3): 754-769. [11] Xie Xiaorong, Zhan Ying, Liu Huakun, et al.Wide-area monitoring and early-warning of subsynchronous oscillation in power systems with high-penetration of renewables[J]. International Journal of Electrical Power & Energy Systems, 2019, 108: 31-39. [12] Mahish P, Pradhan A K.Mitigating subsynchronous resonance using synchrophasor data based control of wind farms[J]. IEEE Transactions on Power Delivery, 2020, 35(1): 364-376. [13] Xie Xiaorong, Zhan Ying, Shair J, et al.Identifying the source of subsynchronous control interaction via wide-area monitoring of sub/super-synchronous power flows[J]. IEEE Transactions on Power Delivery, 2020, 35(5): 2177-2185. [14] Wang Yang, Jiang Xiaolong, Xie Xiaorong, et al.Identifying sources of subsynchronous resonance using wide-area phasor measurements[J]. IEEE Transactions on Power Delivery, 2021, 36(5): 3242-3254. [15] Zhang Fang, Li Jiaxin, Liu Jun, et al.An improved interpolated DFT-based parameter identification for sub-/super-synchronous oscillations with synchro-phasors[J]. IEEE Transactions on Power Systems, 2023, 38(2): 1714-1727. [16] 王杨, 晁苗苗, 谢小荣, 等. 基于同步相量数据的次同步振荡参数辨识与实测验证[J]. 中国电机工程学报, 2022, 42(3): 899-909. Wang Yang, Chao Miaomiao, Xie Xiaorong, et al.Identification of subsynchronous oscillation parameters and field tests based on PMU data[J]. Proceedings of the CSEE, 2022, 42(3): 899-909. [17] Zhang Fang, Cheng Lin, Gao Wenzhong, et al.Synchrophasors-based identification for subsynchronous oscillations in power systems[J]. IEEE Transactions on Smart Grid, 2019, 10(2): 2224-2233. [18] Yang Xiaomei, Zhang Jianing, Xie Xiaorong, et al.Interpolated DFT-based identification of sub-synchronous oscillation parameters using synchrophasor data[J]. IEEE Transactions on Smart Grid, 2020, 11(3): 2662-2675. [19] 马钺, 蔡东升, 黄琦. 基于Rife-Vincent窗和同步相量测量数据的风电次同步振荡参数辨识[J]. 中国电机工程学报, 2021, 41(3): 790-803. Ma Yue, Cai Dongsheng, Huang Qi.Parameter identification of wind power sub-synchronous oscillation based on Rife-Vincent window and synchrophasor data[J]. Proceedings of the CSEE, 2021, 41(3): 790-803. [20] Laila D S, Messina A R, Pal B C.A refined Hilbert-Huang transform with applications to inter-area oscillation monitoring[C]//2009 IEEE Power & Energy Society General Meeting, Calgary, AB, Canada, 2009: 1. [21] Zhou Ning, Trudnowski D J, Pierre J W, et al.Electromechanical mode online estimation using regularized robust RLS methods[J]. IEEE Transactions on Power Systems, 2008, 23(4): 1670-1680. [22] 董青迅, 李兴源, 穆子龙, 等. 基于Prony算法的次同步谐振检测方法[J]. 电力系统及其自动化学报, 2012, 24(2): 1-4, 34. Dong Qingxun, Li Xingyuan, Mu Zilong, et al.New method for detection of sub-synchronous resonance based on Prony algorithm[J]. Proceedings of the Chinese Society of Universities for Electric Power System and Its Automation, 2012, 24(2): 1-4, 34. [23] 王茂海, 高洵, 王蓓, 等. 基于广域测量系统的次同步振荡在线监测预警方法[J]. 电力系统自动化, 2011, 35(6): 98-102. Wang Maohai, Gao Xun, Wang Bei, et al.Online early-warning of sub-synchronous oscillations based on wide area measurement system[J]. Automation of Electric Power Systems, 2011, 35(6): 98-102. [24] 张敏, 沈健, 侯明国, 等. 相量测量单元实现次同步振荡在线辨识和告警的探讨[J]. 电力系统自动化, 2016, 40(16): 143-146, 152. Zhang Min, Shen Jian, Hou Mingguo, et al.Discussion on on-line identification and warning of subsynchronous oscillation for phasor measuring unit[J]. Automation of Electric Power Systems, 2016, 40(16): 143-146, 152. [25] Wang Maohai, Sun Yuanzhang.A practical, precise method for frequency tracking and phasor estimation[J]. IEEE Transactions on Power Delivery, 2004, 19(4): 1547-1552. [26] 王茂海, 齐霞. 电力系统次同步振荡分量的快速在线检测算法[J]. 电力系统自动化, 2016, 40(18): 149-154. Wang Maohai, Qi Xia.Fast online detection method for power system sub-synchronous oscillation components[J]. Automation of Electric Power Systems, 2016, 40(18): 149-154. [27] Rauhala T, Gole A M, Järventausta P.Detection of subsynchronous torsional oscillation frequencies using phasor measurement[J]. IEEE Transactions on Power Delivery, 2016, 31(1): 11-19. [28] Liu Hao, Bi Tianshu, Chang Xiqiang, et al.Impacts of subsynchronous and supersynchronous frequency components on synchrophasor measurements[J]. Journal of Modern Power Systems and Clean Energy, 2016, 4(3): 362-369. [29] 刘灏, 李珏, 毕天姝, 等. 基于PMU相量的次/超同步间谐波识别方法[J]. 电网技术, 2017, 41(10): 3237-3245. Liu Hao, Li Jue, Bi Tianshu, et al.Subsynchronous and supersynchronous inter-harmonic identification method based on phasor measurements[J]. Power System Technology, 2017, 41(10): 3237-3245. [30] Liu Hao, Qi Yuan, Zhao Junbo, et al.Data-driven subsynchronous oscillation identification using field synchrophasor measurements[J]. IEEE Transactions on Power Delivery, 2022, 37(1): 165-175. [31] 王渝红, 王宏宇, 于光远, 等. 基于同步相量数据的次同步振荡检测与模态参数辨识方法[J]. 高电压技术, 2023, 49(6): 2557-2568. Wang Yuhong, Wang Hongyu, Yu Guangyuan, et al.Sub-synchronous oscillation detection and modal parameter identification method based on synchrophasor[J]. High Voltage Engineering, 2023, 49(6): 2557-2568. [32] 张放, 刘军, 李佳欣, 等. 基于同步相量轨迹拟合的电力系统次同步/超同步振荡的实时参数辨识[J]. 中国电机工程学报, 2023, 43(4): 1413-1426. Zhang Fang, Liu Jun, Li Jiaxin, et al.Real-time parameter identification with synchrophasor trajectory fitting technique for subsynchronous/supersynchronous oscillations in power systems[J]. Proceedings of the CSEE, 2023, 43(4): 1413-1426. [33] Yang Xiaomei, Yang Lin, Xiao Xianyong, et al.A novel detection method for supersynchronous resonance from synchrophasor data[J]. IEEE Transactions on Power Systems, 2023, 38(4): 3694-3706. [34] Wang Yuhong, Wang Hongyu, Song Yuyan, et al.Parameter identification of sub-synchronous/super-synchronous oscillations based on synchrophasor rotation and spectral shift[J]. International Journal of Electrical Power & Energy Systems, 2023, 149: 109044. [35] Wu Chen, Sheng Jie, Cheng Guangying, et al.Wide-band phasor measurement unit: design and test[C]// 2019 IEEE Innovative Smart Grid Technologies-Asia (ISGT Asia), Chengdu, China, 2019: 1116-1120. [36] 樊陈, 姚建国, 常乃超, 等. 面向电力电子化电网的宽频测量技术探讨[J]. 电力系统自动化, 2019, 43(16): 1-8, 57. Fan Chen, Yao Jianguo, Chang Naichao, et al.Discussion on wide-frequency measurement technology for power electronized power grid[J]. Automation of Electric Power Systems, 2019, 43(16): 1-8, 57. [37] 吴艳平, 姚建国, 常乃超, 等. 多功能宽频测量装置的设计与实现[J]. 电力系统自动化, 2020, 44(20): 136-141. Wu Yanping, Yao Jianguo, Chang Naichao, et al.Design and implementation of multi-functional wide-frequency measurement device[J]. Automation of Electric Power Systems, 2020, 44(20): 136-141. [38] 南京南瑞继保电气有限公司. PCS-993C振荡监测与控制装置[EB/OL].https://nrec.com/cn/index.php/ product/list/21/37. [39] 北京四方继保自动化股份有限公司. CSD-360系列同步相量测量装置[EB/OL].https://www.sf-auto.com/ productDetail/3155.html. [40] 徐衍会, 成蕴丹, 刘慧, 等. 基于瞬时功率的次同步振荡频率提取及振荡源识别方法[J]. 电工技术学报, 2023, 38(11): 2894-2907. Xu Yanhui, Cheng Yundan, Liu Hui, et al.Subsynchronous oscillation frequency extraction and oscillation source identification method based on instantaneous power[J]. Transactions of China Electrotechnical Society, 2023, 38(11): 2894-2907. [41] 樊陈, 姚建国, 常乃超, 等. 电力系统宽频测量装置技术规范解读及应用展望[J]. 电力系统自动化, 2023, 47(5): 190-199. Fan Chen, Yao Jianguo, Chang Naichao, et al.Interpretation of technical specification for wide-frequency measurement device of power system and prospect of its application[J]. Automation of Electric Power Systems, 2023, 47(5): 190-199. [42] 刘灏, 任小伟, 田建南, 等. 基于K-ESPRIT的快速宽频测量方法[J]. 电力系统自动化, 2020, 44(10): 186-192. Liu Hao, Ren Xiaowei, Tian Jiannan, et al.Fast wide-frequency measurement method based on kurtosis-estimation of signal parameters via rotation invariance technique[J]. Automation of Electric Power Systems, 2020, 44(10): 186-192. [43] 刘灏, 李进生, 毕天姝, 等. 基于改进Prony的动态宽频测量算法[J]. 电网技术, 2023, 47(5): 2119-2128. Liu Hao, Li Jinsheng, Bi Tianshu, et al.Dynamic wide-frequency measurement algorithm based on improved Prony[J]. Power System Technology, 2023, 47(5): 2119-2128. [44] 马宁宁, 谢小荣, 唐健, 等. “双高”电力系统宽频振荡广域监测与预警系统[J]. 清华大学学报(自然科学版), 2021, 61(5): 457-464. Ma Ningning, Xie Xiaorong, Tang Jian, et al.Wide-area measurement and early warning system for wide-band oscillations in “double-high” power systems[J]. Journal of Tsinghua University (Science and Technology), 2021, 61(5): 457-464. [45] IEEE standard for synchrophasor measurements for power systems: IEEE Std C37.118.1—2011 (Revision of IEEE Std C37.118-2005)[S]. IEEE, 2011. [46] Ren Wei, Larsen E.A refined frequency scan approach to sub-synchronous control interaction (SSCI) study of wind farms[J]. IEEE Transactions on Power Systems, 2016, 31(5): 3904-3912. [47] 南京南瑞继保电气有限公司. PCS-996-H2同步相量测量系统[EB/OL].https://www.nrec.com/cn/index. php/product/list/21/65. [48] 余高旺, 方陈, 樊占峰, 等. 基于汉宁窗的配电网同步相量测量装置算法及应用[J]. 中国电力, 2022, 55(6): 18-24. Yu Gaowang, Fang Chen, Fan Zhanfeng, et al.Research and application of algorithm for distribution network synchronous phasor measurement unit based on hanning window[J]. Electric Power, 2022, 55(6): 18-24. [49] Netto M, Mili L.A robust prony method for power system electromechanical modes identification[C]// 2017 IEEE Power & Energy Society General Meeting, Chicago, IL, USA, 2018: 1-5. [50] Khalilinia H, Venkatasubramanian V.Subsynchronous resonance monitoring using ambient high speed sensor data[J]. IEEE Transactions on Power Systems, 2016, 31(2): 1073-1083. [51] Bertocco M, Frigo G, Narduzzi C, et al.Resolution enhancement by compressive sensing in power quality and phasor measurement[J]. IEEE Transactions on Instrumentation and Measurement, 2014, 63(10): 2358-2367. [52] Jain S K, Singh S N.Exact model order ESPRIT technique for harmonics and interharmonics estimation[J]. IEEE Transactions on Instrumentation and Measurement, 2012, 61(7): 1915-1923. [53] Bertocco M, Frigo G, Narduzzi C, et al.Compressive sensing of a Taylor-Fourier multifrequency model for synchrophasor estimation[J]. IEEE Transactions on Instrumentation and Measurement, 2015, 64(12): 3274-3283. [54] Narduzzi C, Bertocco M, Frigo G, et al.Fast-TFM—multifrequency phasor measurement for distribution networks[J]. IEEE Transactions on Instrumentation and Measurement, 2018, 67(8): 1825-1835. [55] Arrieta Paternina M R, Tripathy R K, Zamora Mendez A, et al. Identification of electromechanical oscillatory modes based on variational mode decomposition[J]. Electric Power Systems Research, 2019, 167: 71-85. [56] Wang Liang, Xie Xiaorong, Jiang Qirong, et al.Investigation of SSR in practical DFIG-based wind farms connected to a series-compensated power system[J]. IEEE Transactions on Power Systems, 2015, 30(5): 2772-2779. [57] Liu Huakun, Xie Xiaorong, He Jingbo, et al.Subsynchronous interaction between direct-drive PMSG based wind farms and weak AC networks[J]. IEEE Transactions on Power Systems, 2017, 32(6): 4708-4720. [58] Wang Liang, Xie Xiaorong, Jiang Qirong, et al.Mitigation of multimodal subsynchronous resonance via controlled injection of supersynchronous and subsynchronous currents[J]. IEEE Transactions on Power Systems, 2014, 29(3): 1335-1344. [59] 徐衍会, 曹宇平. 直驱风机网侧换流器引发次/超同步振荡机理研究[J]. 电网技术, 2018, 42(5): 1556-1564. Xu Yanhui, Cao Yuping.Research on mechanism of sub/sup-synchronous oscillation caused by GSC controller of direct-drive permanent magnetic synchronous generator[J]. Power System Technology, 2018, 42(5): 1556-1564. [60] 李景一, 毕天姝, 于钊, 等. 直驱风机变流控制系统对次同步频率分量的响应机理研究[J]. 电网技术, 2017, 41(6): 1734-1740. Li Jingyi, Bi Tianshu, Yu Zhao, et al.Study on response characteristics of grid converter control system of permanent magnet synchronous generators (PMSG) to subsynchronous frequency component[J]. Power System Technology, 2017, 41(6): 1734-1740. [61] Brown M, Biswal M, Brahma S, et al.Characterizing and quantifying noise in PMU data[C]//2016 IEEE Power and Energy Society General Meeting (PESGM), Boston, MA, USA, 2016: 1-5. [62] Almunif A, Fan Lingling, Miao Zhixin. A tutorial on data-driven eigenvalue identification: Prony analysis, matrix pencil,eigensystem realization algorithm [J]. International Transactions on Electrical Energy Systems, 2020, 30(4): e12283.1-e12283.17. [63] 孙东阳, 孟繁易, 王南, 等. 基于反步自适应准谐振控制的双馈风机次同步振荡抑制策略[J]. 电工技术学报, 2023, 38(9): 2375-2390, 2434. Sun Dongyang, Meng Fanyi, Wang Nan, et al.DFIG sub-synchronous oscillation suppression strategy based on backstepping adaptive quasi-resonant control[J]. Transactions of China Electrotechnical Society, 2023, 38(9): 2375-2390, 2434.