电工技术学报  2024, Vol. 39 Issue (14): 4480-4494    DOI: 10.19595/j.cnki.1000-6753.tces.230861
电力电子 |
双有源桥串联欠谐振变换器的最小回流电流控制
高祎韩1, 周子航1, 张欣1,2, 马皓1,3
1.浙江大学电气工程学院 杭州 310027;
2.浙江大学杭州国际科创中心 杭州 310027;
3.浙江大学伊利诺伊大学厄巴纳香槟校区联合学院 海宁 311200
Minimum Backflow Current Control of Under-Resonant-Dual-Bridge-Series-Resonant Converter
Gao Yihan1, Zhou Zihang1, Zhang Xin1,2, Ma Hao1,3
1. College of Electrical Engineering Zhejiang University Hangzhou 310027 China;
2. Hangzhou Global Scientific and Technological Innovation Center Hangzhou 310027 China;
3. Zhejiang University/University of Illinois at Urbana-Champaign Institute Haining 311200 China
全文: PDF (5067 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 该文采用时域分析法对双有源桥串联欠谐振电路进行了分析,得到电感电流在稳态时的表达式并推导所有开关管实现软开关的条件。由于电压增益偏离1时仅采用移相控制难以实现所有开关管的软开关,因此,该文在传统移相控制的基础上,引入额外的变频控制策略,使得电路在不同的电压增益和负载条件下都能有较好的软开关性能。然而,软开关的实现会增加电路的回流电流,影响电路的传输效率。该文对所提出的变频移相控制进行了进一步的优化,使其可以在确保电路实现软开关的同时产生最小的回流电流和电感电流有效值。所提出的控制策略在一台2 kW的样机中进行了验证。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
高祎韩
周子航
张欣
马皓
关键词 双有源桥串联欠谐振变换器软开关最小回流电流控制变频控制    
Abstract:With bi-directional power transmission capability and high conversion efficiency, a dual- bridge-series-resonant converter (DBSRC) has attracted wide attention in battery charging and DC distribution systems. Since the soft-switching implementation of DBSRC is challenging when the voltage gain and load vary over a wide range, improvements in hardware and modulation schemes have been proposed to extend the soft-switching regions of the DBSRC. Nevertheless, it is still worth investigating to make the circuit simultaneously achieve full-load zero-voltage-switching (ZVS) operation and low circulating losses within a narrow switching frequency range without resorting to additional hardware components. This paper proposes an improved under-resonant control strategy, combining variable-frequency control and phase-shift control to minimize backflow current and optimize the root-mean-square (RMS) current.
Firstly, inductor current expressions and ZVS conditions for different switches are explored through time-domain analysis. Compared with the optional range of Dφ under ZVS conditions, the soft-switching conditions of the circuit are simplified. When the voltage gain is less (more) than 1, implementing soft-switching on the V1 (V2) side enables full ZVS operation. Secondly, this paper adopts the KKT condition to derive the closed-form solutions of control variables to optimize backflow current while achieving full-load-range ZVS operation. According to the optimization results, the inner-phase-shift ratio is fixed at 1, and the outer-phase-shift ratio (Dφ) is expressed as a function of the frequency ratio and voltage gain. According to the r obtained from the output of the PI controller and the voltage gain of the circuit, a look-up table is established to quickly determine the value of Dφ, enhancing computational efficiency and dynamic performance.
A 2 kW DBSRC prototype with an output voltage variation of 250 V~360 V was designed to estimate the effect of different control strategies. When the over-resonant variable-frequency phase-shift (VFM+PSM) control is adopted, a switching frequency range of 350 kHz to 660 kHz is required to ensure the circuit operates at full-range ZVS under different load conditions. The extended-pulse-width modulation (EPWM) control can hardly prevent the circuit from experiencing hard-switching at light-to-medium load conditions. In contrast, when the proposed minimum backflow current control is applied, a switching frequency range of 350 kHz to 450 kHz demonstrates the ability to achieve full-range ZVS operation even when the voltage gain is equal to or deviates from 1. It improves the ZVS performance and reduces the switching frequency range. Additionally, the proposed control strategy effectively reduces the backflow current and inductor RMS current, and a 2 A inductor RMS current reduction can be achieved under most load conditions.
According to the experimental results, the effects of the proposed control strategy are summarized as follows. (1) The proposed minimum backflow current control provides full-range ZVS operation for the circuit without additional hardware components. (2) Compared with conventional strategies, the proposed control strategy can effectively extend the ZVS range while reducing the required switching frequency range. (3) In under-resonant operating mode, minimum backflow current control provides lower backflow current and inductor RMS current to reduce the circulating, conduction, and copper losses, improving transmission efficiency.
Key wordsUnder-resonant-dual-bridge-series-resonant converter    zero-voltage-switching    minimum back- flow current control    variable-frequency control   
收稿日期: 2023-06-06     
PACS: TM46  
基金资助:国家自然科学基金资助项目(62227802)
通讯作者: 马皓, 男,1969年生,教授,博士生导师,研究方向为电力电子技术及其应用、电力电子先进控制技术、电力电子系统故障诊断、大功率无线电能传输等。E-mail: mahao@zju.edu.cn   
作者简介: 高祎韩, 男,1994年生,博士研究生,研究方向为电力电子技术及其应用。E-mail: 12010064@zju.edu.cn
引用本文:   
高祎韩, 周子航, 张欣, 马皓. 双有源桥串联欠谐振变换器的最小回流电流控制[J]. 电工技术学报, 2024, 39(14): 4480-4494. Gao Yihan, Zhou Zihang, Zhang Xin, Ma Hao. Minimum Backflow Current Control of Under-Resonant-Dual-Bridge-Series-Resonant Converter. Transactions of China Electrotechnical Society, 2024, 39(14): 4480-4494.
链接本文:  
https://dgjsxb.ces-transaction.com/CN/10.19595/j.cnki.1000-6753.tces.230861          https://dgjsxb.ces-transaction.com/CN/Y2024/V39/I14/4480