Abstract:The dual active bridge (DAB) has the advantages of high voltage utilization, high power density, and bidirectional power transfer capability. In medium and high voltage-low voltage DC power grids, the input-series output-parallel (ISOP) DAB improves the voltage of the series side and realizes a large voltage conversion ratio. However, problems such as power imbalance between modules exist. This paper analyzes the module difference and power balance control for ISOP-DAB with a three-level neutral point clamped (3L-NPC) half-bridge. Firstly, this paper compares existing multi-module power balance methods, introduces their advantages and disadvantages, and analyzes the structure and principle of the ISOP-DAB system with a 3L-NPC half-bridge-H bridge. The reasons for the power imbalance of multiple modules are analyzed, focusing on the power transmission imbalance caused by different module parameters of the three-level half-bridge ISOP-DAB converter. Secondly, this paper analyzes the relationship between voltage, current, and power among ISOP-DAB modules. The factors affecting module consistency are discussed. The self-balancing ability of the system under disturbance is analyzed, as well as the difference in control stability between series and parallel sides under bidirectional power. A power balance control strategy without sampling voltage or current module is proposed based on TPS modulation, simplifying the sampling circuit and control design. The strategy provides a backup solution in case of sensor failure. Then, an estimation method for multi-module parameter differences is proposed. Its core idea is to inject forced components as disturbance and observe feature changes reflecting module differences. Combined with the power balance control strategy, the estimation method can be extended to N modules. Three modules are simulated in Matlab/Simulink. The constraints of the control parameter are studied to avoid overpowering. The variation trend of the power boundary margin is analyzed concerning the module number and power. Finally, an ISOP-DAB converter experimental platform with field programmable gate arrays (FPGA) controllers is designed to realize the voltage conversion from 220 V to 24 V. Under four disturbances of different sizes and plus and minus, the module difference estimation method is verified. In the output voltage range of 24 V and 10~435 W, the system can significantly improve the voltage balance on the series side under power balance control, and the efficiency is higher than 90% under most powers.
李嘉进, 马翔, 谢宇帆, 王天翔, 舒泽亮. 输入串联输出并联型三电平双有源桥变换器功率与电压平衡控制策略[J]. 电工技术学报, 2024, 39(10): 3082-3092.
Li Jiajin, Ma Xiang, Xie Yufan, Wang Tianxiang, Shu Zeliang. Power and Voltage Balance Control Strategy of Series Input Parallel Output Type Three-Level Dual Active Bridge Converter. Transactions of China Electrotechnical Society, 2024, 39(10): 3082-3092.
[1] 郭小强, 魏玉鹏, 万燕鸣, 等. 新能源制氢电力电子变换器综述[J]. 电力系统自动化, 2021, 45(20): 185-199. Guo Xiaoqiang, Wei Yupeng, Wan Yanming, et al.Review on power electronic converters for producing hydrogen from renewable energy sources[J]. Auto- mation of Electric Power Systems, 2021, 45(20): 185-199. [2] 高范强, 李子欣, 李耀华, 等. 面向交直流混合配电应用的10kV-3MV·A四端口电力电子变压器[J].电工技术学报, 2021, 36(16): 3331-3341. Gao Fanqiang, Li Zixin, Li Yaohua, et al.10kV- 3MV·A four-port power electronic transformer for AC-DC hybrid power distribution applications[J]. Transactions of China Electrotechnical Society, 2021, 36(16): 3331-3341. [3] 孙孝峰, 张绘欣, 张涵, 等. 一种用于电-氢多能互补型微电网的双有源桥集成Boost拓扑及其控制[J]. 电工技术学报, 2021, 36(10): 2092-2104. Sun Xiaofeng, Zhang Huixin, Zhang Han, et al.Topology and control strategy of dual active bridge integrated boost circuit for electro-hydrogen multi- energy complementary microgrid[J]. Transactions of China Electrotechnical Society, 2021, 36(10): 2092-2104. [4] 何东欣, 张涛, 陈晓光, 等. 脉冲电压下电力电子装备绝缘电荷特性研究综述[J]. 电工技术学报, 2021, 36(22): 4795-4808. He Dongxin, Zhang Tao, Chen Xiaoguang, et al.Research overview on charge characteristics of power electronic equipment insulation under the pulse voltage[J]. Transactions of China Electrotechnical Society, 2021, 36(22): 4795-4808. [5] Shi Jianjiang, Gou Wei, Yuan Hao, et al.Research on voltage and power balance control for cascaded modular solid-state transformer[J]. IEEE Transactions on Power Electronics, 2011, 26(4): 1154-1166. [6] Elserougi A A, Massoud A M, Ahmed S.A grid- connected capacitor-tapped multimodule converter for HVDC applications: operational concept and con- trol[J]. IEEE Transactions on Industry Applications, 2018, 54(5): 5523-5535. [7] 张颖, 荆龙, 吴学智, 等. 输入串联输出串联型双向DC/DC变换器自适应均压控制策略研究[J]. 电网技术, 2018, 42(9): 2900-2907. Zhang Ying, Jing Long, Wu Xuezhi, et al.Adaptive voltage sharing control strategy for input-series output-series connected DC/DC converter[J]. Power System Technology, 2018, 42(9): 2900-2907. [8] Tang Yu, Zhao Zixiang, Shi Zhe, et al.Input-series output-parallel DC-DC converter based on adaptive coefficient voltage equalization control[J]. Inter- national Journal of Circuit Theory and Applications, 2022, 50(10): 3539-3550. [9] 徐硕, 马智远, 许中, 等. ISOP-DAB的均压均流控制方法综述[J]. 北京交通大学学报, 2021, 45(6): 1-9. Xu Shuo, Ma Zhiyuan, Xu Zhong, et al.Review of voltage and current sharing control methods for ISOP-DAB[J]. Journal of Beijing Jiaotong University, 2021, 45(6): 1-9. [10] 杨博, 葛琼璇, 赵鲁, 等. 基于输入串联输出并联的双向全桥串联谐振DC-DC变换器系统控制策略研究[J]. 电工技术学报, 2020, 35(12): 2574-2584. Yang Bo, Ge Qiongxuan, Zhao Lu, et al.Control strategy of dual bridge series resonant DC-DC converter system based on input series output parallel connection[J]. Transactions of China Electrotechnical Society, 2020, 35(12): 2574-2584. [11] Liu Fei, Zhou Guangjun, Ruan Xinbo, et al.An input- series-output-parallel converter system exhibiting natural input-voltage sharing and output-current sharing[J]. IEEE Transactions on Industrial Elec- tronics, 2021, 68(2): 1166-1177. [12] 郑昊, 杜贵平, 雷雁雄, 等. 混合储能双向DC/DC变换器线性自抗扰控制研究[J]. 电力电子技术, 2022, 56(9): 80-83. Zheng Hao, Du Guiping, Lei Yanxiong, et al.Research on linear active disturbance rejection control of hybrid energy storage bidirectional DC/DC converter[J]. Power Electronics, 2022, 56(9): 80-83. [13] Kim S H, Kim B J, Park J M, et al.Decentralized control method of ISOP converter for input voltage sharing and output current sharing in current control loop[J]. Energies, 2020, 13(5): 1114. [14] 张捷频, 刘建强, 杨景熙, 等. 输入串联输出并联变换器的控制器设计及稳定性分析方法[J]. 电工技术学报, 2017, 32(17): 180-188. Zhang Jiepin, Liu Jianqiang, Yang Jingxi, et al.Controller design and stability analysis method for input-series-output-parallel converters[J]. Transactions of China Electrotechnical Society, 2017, 32(17): 180-188. [15] 安峰, 王嵩, 杨柯欣. 输入串联输出并联双有源全桥DC-DC变换器多模块优化功率平衡控制方法[J]. 电工技术学报, 2018, 33(16): 3732-3742. An Feng, Wang Song, Yang Kexin.Multi-module optimized power balance control scheme of the input-series-output-parallel operated dual-active- bridge DC-DC converters[J]. Transactions of China Electrotechnical Society, 2018, 33(16): 3732-3742. [16] Moon J, Lee T, Han Sanghun, et al.Multi-loop voltage control strategy of half-bridge voltage balancers with current sensorless scheme[J]. Journal of Power Electronics, 2020, 20(4): 1015-1024. [17] 贾卓, 贾文超, 林宏博, 等. 双向DC/DC变换器ISOP系统功率均分策略研究[J]. 现代电子技术, 2021, 44(10): 105-109. Jia Zhuo, Jia Wenchao, Lin Hongbo, et al.Research on power sharing strategy of ISOP system for dual active bridge DC/DC converter[J]. Modern Elec- tronics Technique, 2021, 44(10): 105-109. [18] 谷恭山, 郑祥杰, 高明, 等. 两级结构模块化ISOP组合的DC-DC变换器均压控制策略[J]. 电工技术学报, 2019, 34(15): 3175-3185. Gu Gongshan, Zheng Xiangjie, Gao Ming, et al.Research on voltage sharing control strategy of a combined two stage modular input-series output- parallel DC-DC converter[J]. Transactions of China Electrotechnical Society, 2019, 34(15): 3175-3185. [19] 蔡逢煌, 石安邦, 江加辉, 等. 结合电流应力优化与虚拟电压补偿的双有源桥DC-DC变换器三重移相优化控制[J]. 电工技术学报, 2022, 37(10): 2559-2571. Cai Fenghuang, Shi Anbang, Jiang Jiahui, et al.Triple-phase-shift optimal control of dual-active- bridge DC-DC converter with current stress optimi- zation and virtual voltage compensation[J]. Transa- ctions of China Electrotechnical Society, 2022, 37(10): 2559-2571. [20] 王攀攀, 徐泽涵, 王莉, 等. 基于三重移相的双有源桥DC-DC变换器效率与动态性能混合优化控制策略[J]. 电工技术学报, 2022, 37(18): 4720-4731. Wang Panpan, Xu Zehan, Wang Li, et al.A hybrid optimization control strategy of efficiency and dynamic performance of dual-active-bridge DC-DC converter based on triple-phase-shift[J]. Transactions of China Electrotechnical Society, 2022, 37(18): 4720-4731. [21] 杨向真, 王锦秀, 孔令浩, 等. 电压不匹配运行条件下双有源桥变换器的效率优化方法[J]. 电工技术学报, 2022, 37(24): 6239-6251. Yang Xiangzhen, Wang Jinxiu, Kong Linghao, et al.Efficiency optimization method of DAB converters under wide-voltage operating conditions[J]. Transa- ctions of China Electrotechnical Society, 2022, 37(24): 6239-6251. [22] Sun Zhifeng, Wang Qin, Xiao Lan, et al.A simple sensorless current sharing control for input-parallel output-parallel dual active bridge converters[J]. IEEE Transactions on Industrial Electronics, 2022, 69(11): 10819-10833. [23] 高宇, 李若愚, 李林柘, 等. 三重移相调制模式下双有源变换器的直接功率控制[J]. 电工技术学报, 2022, 37(18): 4707-4719. Gao Yu, Li Ruoyu, Li Linzhe, et al.Triple phase shift modulation-based direct power control strategy for a dual active bridge converter[J]. Transactions of China Electrotechnical Society, 2022, 37(18): 4707-4719. [24] 曲璐. 输入串联型组合变换器控制策略关键技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2018. Qu Lu.Study on key technologies of input series combination converters control strategy[D]. Harbin: Harbin Institute of Technology, 2018. [25] Qu Lu, Zhang Donglai, Bao Zhiyun.Output current- differential control scheme for input-series-output- parallel-connected modular DC-DC converters[J]. IEEE Transactions on Power Electronics, 2017, 32(7): 5699-5711.