Abstract:This paper proposes a comprehensive modeling and multi-objective optimization method for coupled inductors of high-power interleaved boost converters to realize the dual optimization of inductor volume and converter efficiency. Firstly, based on the constraint on input current ripples, the mathematical model is established for the electrical parameters of coupled inductors. Secondly, the windings layout of a traditional E-type coupled inductor is optimized, and an inductor design scheme with equal windings is proposed. Then, a comprehensive model for inductor volume and converter efficiency is established with key parameters of coupled inductors (switching frequency, coupling coefficient and core cross-sectional area) as design variables. Based on the comprehensive model, Pareto-fronts of efficiency and inductor volume are obtained via iterative operation of design variables, thus providing a theoretical basis for multi-objective optimization of coupled inductors. Finally, a 20kW experimental prototype based on coupled and non-coupled inductors was produced. The results show that the maximum efficiency of the experimental prototype with coupled inductors is 98.43%, which is 0.21% higher than that with uncoupled inductors, and inductor volume decreases by 32% after coupling.
马小勇, 王萍, 王议锋, 陶珑, 杨绍琪. 基于交错并联Boost变换器的耦合电感综合建模与多目标优化方法[J]. 电工技术学报, 2022, 37(24): 6399-6410.
Ma Xiaoyong, Wang Ping, Wang Yifeng, Tao Long, Yang Shaoqi. Comprehensive Modeling and Multi-Objective Optimization Method for Coupled Inductors of Interleaved Boost Converters. Transactions of China Electrotechnical Society, 2022, 37(24): 6399-6410.
[1] 侯慧, 刘鹏, 黄亮, 等. 考虑不确定性的电-热-氢综合能源系统规划[J]. 电工技术学报, 2021, 36(增刊1): 133-144. Hou Hui, Liu Peng, Huang Liang, et al.Planning of electricity-heat-hydrogen integrated energy system considering uncertainties[J]. Transactions of China Electrotechnical Society, 2021, 36(S1): 133-144. [2] 高锋阳, 张浩然, 王文祥, 等. 氢燃料电池有轨电车混合储能系统的节能运行优化[J]. 电工技术学报, 2022, 37(3): 686-696. Gao Fengyang, Zhang Haoran, Wang Wenxiang, et al.Energy saving operation optimization of hybrid energy storage system for hydrogen fuel cell tram[J]. Transactions of China Electrotechnical Society, 2022, 37(3): 686-696. [3] Chen Y T, Lu Zongxing, Liang R H.Analysis and design of a novel high-step-up DC/DC converter with coupled inductors[J]. IEEE Transactions on Power Electronics, 2018, 33(1): 425-436. [4] Barry B C, Hayes J G, Rylko M S, et al.Small-signal model of the two-phase interleaved coupled-inductor Boost converter[J]. IEEE transactions on power electronics, 2018, 33(9): 8052-8064. [5] 苏冰, 王玉斌, 王璠, 等. 基于耦合电感的多相交错并联双向DC-DC变换器及其均流控制[J]. 电工技术学报, 2020, 35(20): 4336-4349. Su Bing, Wang Yubin, Wang Fan, et al.Multi-phase interleaved bidirectional DC-DC converter with coupled inductors and current sharing control strategy[J]. Transactions of China Electrotechnical Society, 2020, 35(20): 4336-4349. [6] Yang Yugang, Guan Tingting, Zhang Shuqi, et al.More symmetric four-phase inverse coupled inductor for low current ripples & high-efficiency interleaved bidirectional Buck/Boost converter[J]. IEEE Transa- ctions on Power Electronics, 2018, 33(3): 1952-1966. [7] Granados-Luna T R, Araujo-Vargas I, Forsyth A J, et al. Two-phase, dual interleaved Buck-Boost DC-DC converter for automotive applications[J]. IEEE transa- ctions on industry applications, 2020, 56(1): 390-402. [8] Huang Xiucheng, Lee F C, Li Qiang, et al.High- frequency high-efficiency GaN-based interleaved CRM bidirectional Buck/Boost converter with inverse coupled inductor[J]. IEEE Transactions on Power Electronics, 2016, 31(6): 4343-4352. [9] Hartnett K J, Hayes J G, Rylko M S, et al.Comparison of 8kW CCTT IM and discrete inductor interleaved Boost converter for renewable energy applications[J]. IEEE Transactions on Industry Appli- cations, 2015, 51(3): 2455-2469. [10] Stratta A, Gottardo D, Nardo M D, et al.Optimal integrated design of a magnetically coupled inter- leaved H-bridge[J]. IEEE Transactions on Power Electronics, 2022, 37(1): 724-737. [11] Kimura S, Imaoka J, Yamamoto M, et al.Downsizing effects of integrated magnetic components in high power density DC-DC converters for EV and HEV applications[J]. IEEE Transactions on Industry Appli- cations, 2016, 52(4): 3294-3305. [12] Calderon-Lopez G, Scoltock J, Wang Y, et al.Power-dense bidirectional DC-DC converters with high-performance inductors[J]. IEEE Transactions on Vehicular Technology, 2019, 68(12): 11439-11448. [13] Lee J P, Cha H, Shin D, et al.Analysis and design of coupled inductors for two-phase interleaved DC-DC converters[J]. Journal of Power Electronics, 2013, 13(3): 339-348. [14] 杨玉岗, 祁鳞, 吴建鸿. 三相交错并联磁集成Boost变换器的内部本质安全特性[J]. 电工技术学报, 2014, 29(4): 54-62. Yang Yugang, Qi Lin, Wu Jianhong.Analysis of inner-intrinsic safety for three-phase interleaving magnetic integrated Boost converter[J]. Transactions of China Electrotechnical Society, 2014, 29(4): 54-62. [15] 杨玉岗, 李涛, 冯本成. 交错并联磁集成双向DC/DC变换器的设计准则[J]. 中国电机工程学报, 2012, 32(30): 37-45, 8. Yang Yugang, Li Tao, Feng Bencheng.Design criterion for interleaving and magnetically integrated bidirectional DC/DC converters[J]. Proceedings of the CSEE, 2012, 32(30): 37-45, 8. [16] Hartnett K J, Hayes J G, Egan M G, et al.CCTT-core split-winding integrated magnetic for high-power DC-DC converters[J]. IEEE Transactions on Power Electronics, 2013, 28(11): 4970-4984. [17] Imaoka J, Okamoto K, Kimura S, et al.A magnetic design method considering DC-biased magnetization for integrated magnetic components used in multi- phase Boost converters[J]. IEEE Transactions on Power Electronics, 2018, 33(4): 3346-3362. [18] 马小勇, 王议锋, 王萍, 等. 燃料电池用交错并联型Boost变换器参数综合设计方法[J]. 电工技术学报, 2022, 37(2): 397-408. Ma Xiaoyong, Wang Yifeng, Wang Ping, et al.Comprehensive parameter design method of inter- leaved Boost converter for fuel cell applications[J]. Transactions of China Electrotechnical Society, 2022, 37(2): 397-408.