Characterization of the State of Charge of Lithium-Ion Batteries Based on the Time-Domain Characteristics of Acoustic Waves
Zhang Chuang1, Sun Bo1,2, Jin Liang1,2, Liu Suzhen1,2, Yang Qingxin1,2
1. State Key Laboratory of Reliability and Intelligence of Electrical Equipment Hebei University of Technology Tianjin 300130 China; 2. Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province Hebei University of Technology Tianjin 300130 China
Abstract:Many advanced detection technologies have been proven to be able to obtain the state of charge (SOC) of lithium-ion batteries, but the current detection methods fail to meet both the accuracy and efficiency requirements. The use of ultrasound to characterize SOC has been initially recognized. This method has high detection efficiency and small damage to the battery, but there is a problem that the single acoustic index and the dynamic characteristics of the battery material are not clear. Based on the analysis of the current research status of SOC acoustic characterization of lithium-ion batteries, this paper introduces the ringing count into the battery SOC evaluation, and clarifies the correlation between SOC and ringing count. Based on the Lemaitre equivalent strain principle, the corresponding relationship between the ringing count and the effective Young's modulus is deduced. An on-line detection method for lithium-ion battery SOC based on ultrasonic longitudinal waves is proposed. Combined with conventional acoustic indicators, the effectiveness of lithium-ion batteries in charge and discharge cycles is studied. The evolution law of Young's modulus. By comparing the conventional time-domain acoustic indicators with the ringing count characterization results, the feasibility of the ringing count to characterize the SOC is verified.
张闯, 孙博, 金亮, 刘素贞, 杨庆新. 基于声波时域特征的锂离子电池荷电状态表征[J]. 电工技术学报, 2021, 36(22): 4666-4676.
Zhang Chuang, Sun Bo, Jin Liang, Liu Suzhen, Yang Qingxin. Characterization of the State of Charge of Lithium-Ion Batteries Based on the Time-Domain Characteristics of Acoustic Waves. Transactions of China Electrotechnical Society, 2021, 36(22): 4666-4676.
[1] 宫明辉, 乌江, 焦朝勇. 基于模糊自适应扩展卡尔曼滤波器的锂电池SOC估算方法[J]. 电工技术学报, 2020, 35(18): 3972-3978. Gong Minghui, Wu Jiang, Jiao Chaoyong.SOC estimation method of lithium battery based on fuzzy adaptive extended Kalman filter[J]. Transactions of China Electrotechnical Society, 2020, 35(18): 3972-3978. [2] 卢兰光, 李建秋, 华剑锋, 等. 电动汽车锂离子电池管理系统的关键技术[J]. 科技导报, 2016, 34(6): 39-51. Lu Languang, Li Jianqiu, Hua Jianfeng, et al.A review of the key issues of the lithium-ion battery management[J]. Science & Technology Review, 2016, 34(6): 39-51. [3] 于跃, 林聪, 张恒. 基于荷电状态的锂离子电池主动均衡控制系统的研究与实现[J]. 电气技术, 2019, 20(8): 18-22. Yu Yue, Lin Cong, Zhang Heng.Research and implementation of active balancing control system for lithium-ion batteries based on state of charge[J]. Electrical Engineering, 2019, 20(8): 18-22. [4] 王毅, 谷亿, 丁壮, 等. 基于模糊熵和集成学习的电动汽车充电需求预测[J]. 电力系统自动化, 2020, 44(3): 114-121. Wang Yi, Gu Yi, Ding Zhuang, et al.Charging demand forecasting of electric vehicle based on empirical mode decomposition-fuzzy entropy and ensemble learning[J]. Automation of Electric Power Systems, 2020, 44(3): 114-121. [5] 董红召, 方雅秀, 付凤杰. 物联感知环境下电动汽车充电等待时间分布的预测方法[J]. 电力系统自动化, 2020, 44(9): 86-94. Dong Hongzhao, Fang Yaxiu, Fu Fengjie.Prediction method of charging waiting time distribution for electric vehicles in internet of things perception environment[J]. Automation of Electric Power Systems, 2020, 44(9): 86-94. [6] 刘芳, 马杰, 苏卫星, 等. 基于自适应回归扩展卡尔曼滤波的电动汽车动力电池全生命周期的荷电状态估算方法[J]. 电工技术学报, 2020, 35(4): 698-707. Liu Fang, Ma Jie, Su Weixing, et al.State of charge estimation method of electric vehicle power battery life cycle based on auto regression extended Kalman filter[J]. Transactions of China Electrotechnical Society, 2020, 35(4): 698-707. [7] 李超然, 肖飞, 樊亚翔, 等. 基于门控循环单元神经网络和Huber-M估计鲁棒卡尔曼滤波融合方法的锂离子电池荷电状态估算方法[J]. 电工技术学报, 2020, 35(9): 2051-2062. Li Chaoran, Xiao Fei, Fan Yaxiang, et al.A hybrid approach to lithium-ion battery SOC estimation based on recurrent neural network with gated recurrent unit and Huber-M robust Kalman filter[J]. Transactions of China Electrotechnical Society, 2020, 35(9): 2051-2062. [8] 冯飞, 逯仁贵, 朱春波. 一种锂离子电池低温SOC估计算法[J]. 电工技术学报, 2014, 29(7): 53-58. Feng Fei, Lu Rengui, Zhu Chunbo.State of charge estimation of Li-ion battery at low temperature[J]. Transactions of China Electrotechnical Society, 2014, 29(7): 53-58. [9] 邓哲, 黄震宇, 刘磊, 等. 超声技术在锂离子电池表征中的应用[J]. 储能科学与技术, 2019, 8(6): 1033-1039. Deng Zhe, Huang Zhenyu, Liu Lei, et al.Applications of ultrasound technique in characterization of lithium-ion batteries[J]. Energy Storage Science and Technology, 2019, 8(6): 1033-1039. [10] Bommier C, Chang W, Li Jianlin, et al.Operando acoustic monitoring of SEI formation and long-term cycling in NMC/SiGr composite pouch cells[J]. Journal of the Electrochemical Society, 2020, 167(2): 020517. [11] Bommier C, Chang W, Lu Yufang, et al.In operando acoustic detection of lithium metal plating in commercial LiCoO2/graphite pouch cells[J]. Cell Reports Physical Science, 2020, 1(4): 100035. [12] Davies G, Knehr K W, Tassell B V, et al.State of charge and state of health estimation using electrochemical acoustic time of flight analysis[J]. Journal of the Electrochemical Society, 2017, 164(12): A2746-A2755. [13] Deng Zhe, Huang Zhenyu, Shen Yue, et al.Ultrasonic scanning to observe wetting and “unwetting” in Li-ion pouch cells[J]. Joule, 2020, 4(9): 2017-2029. [14] Sood B, Osterman M, Pecht M.Health monitoring of lithium-ion batteries[C]//2013 IEEE Symposium on Product Compliance Engineering (ISPCE), Austin TX, 2013: 1-6. [15] Hsieh A G, Bhadra S, Hertzberg B J, et al.Electrochemical-acoustic time of flight: in operando correlation of physical dynamics with battery charge and health[J]. Energy & Environmental Science, 2015, 8(5): 1569-1577. [16] Robinson J B, Maier M, Alster G, et al.Spatially resolved ultrasound diagnostics of Li-ion battery electrodes[J]. Physical Chemistry Chemical Physics, 2019, 21(12): 6354-6361. [17] Ladpli P, Kopsaftopoulos F, Chang F K.Estimating state of charge and health of lithium-ion batteries with guided waves using built-in piezoelectric sensors/ actuators[J]. Journal of Power Sources, 2018, 384: 342-354. [18] Robinson J B, Pham M, Kok M D R, et al. Examining the cycling behaviour of Li-ion batteries using ultrasonic time-of-flight measurements[J]. Journal of Power Sources, 2019, 444: 227318. [19] Chang W, Mohr R, Kim A, et al.Measuring effective stiffness of Li-ion batteries via acoustic signal processing[J]. Journal of Materials Chemistry A, 2020, 8(32): 16624-16635. [20] Popp H, Koller M, Keller S, et al.State estimation approach of lithium-ion batteries by simplified ultrasonic time-of-flight measurement[J]. IEEE Access, 2019, 7: 170992-171000. [21] Qi Yue, Hector L G, James C, et al.Lithium concentration dependent elastic properties of battery electrode materials from first principles calculations[J]. Journal of the Electrochemical Society, 2014, 161(11): F3010-F3018. [22] Hu Xiaosong, Feng Fei, Liu Kailong, et al.State estimation for advanced battery management: key challenges and future trends[J]. Renewable and Sustainable Energy Reviews, 2019, 114: 109334. [23] 张万红, 岳敏. 锂离子电池碳负极材料交换电流密度的研究[J]. 电源技术, 2010, 34(3): 223-225. Zhang Wanhong, Yue Min.Study of exchange current density of carbon anode materials for Li-ion battery[J]. Chinese Journal of Power Sources, 2010, 34(3): 223-225. [24] 王榘, 熊瑞, 穆浩. 温度和老化意识融合驱动的电动车辆锂离子动力电池电量和容量协同估计[J]. 电工技术学报, 2020, 35(23): 4980-4987. Wang Ju, Xiong Rui, Mu Hao.Co-estimation of lithium-ion battery state-of-charge and capacity through the temperature and aging awareness model for electric vehicles[J]. Transactions of China Electrotechnical Society, 2020, 35(23): 4980-4987.