电工技术学报  2021, Vol. 36 Issue (14): 2893-2903    DOI: 10.19595/j.cnki.1000-6753.tces.200377
电工理论 |
基于PSO-Powell混合算法的软磁复合材料二维矢量磁滞特性模拟
赵小军1, 徐华伟1, 刘小娜2, 李永建3, 杜振斌4
1. 华北电力大学电力工程系 保定 071003;
2. 西安华为技术有限公司 西安 710075;
3. 河北工业大学电磁场与电器可靠性省部共建重点实验室 天津 300130;
4. 河北省输变电装备电磁与结构性能重点实验室 保定 071056
Two-Dimensional Vector Hysteresis Simulation of Soft Magnetic Composite Materials Based on the Hybrid Algorithm of PSO-Powell
Zhao Xiaojun1, Xu Huawei1, Liu Xiaona2, Li Yongjian3, Du Zhenbin4
1. Department of Electrical and Electronic Engineering North China Electric Power University Baoding 071003 China;
2. Xi’an Huawei Technologies Co. Ltd Xi’an 710075 China;
3. Province-Ministry Joint Key laboratory of Electromagnetic Field and Electrical Apparatus Reliability Hebei University of Technology Tianjin 300130 China;
4. Hebei Provincial Key Laboratory of Electromagnetic & Structural Performance of Power Transmission and Transformation Equipment Baoding 071056 China
全文: PDF (2778 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 针对经典矢量Preisach模型仅能模拟各向同性磁滞特性的缺陷,提出改进的矢量磁滞模型。通过引入幅值与方向角的关联参数改善磁场强度的曲线形态,使模型能够考虑软磁材料的各向异性特征。利用矢量磁特性实验平台对软磁复合材料(SMC)在二维旋转磁化激励下的磁特性进行测量,根据测量的极限磁滞回线,分别构造标量和矢量Everett函数。提出基于粒子群(PSO)和Powell方向加速的组合优化策略,显著改善PSO的局部寻优能力,提高计算效率和精度,进而实现矢量Preisach磁滞模型的高效参数辨识。矢量磁滞特性的仿真结果与测量结果相吻合,验证了该文所提改进矢量磁滞模型及其参数辨识方法的有效性。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵小军
徐华伟
刘小娜
李永建
杜振斌
关键词 软磁复合材料矢量Preisach磁滞模型旋转磁化各向异性参数辨识    
Abstract:An improved vector hysteresis model was proposed because the classical vector Preisach model can only simulate the isotropic hysteresis characteristics of materials. The improved model was utilized to regulate the curve shape of magnetic field strength by introducing the correlation parameters of its amplitude and direction angle. Accordingly, the anisotropy characteristics of soft magnetic composite (SMC) materials can be considered. The experiment for measuring the two- dimensional rotational magnetic properties of the SMC material was carried out by the vector magnetic property platform. The measured limiting hysteresis loops were required to construct the scalar and vector Everett functions. Moreover, a hybrid optimization strategy based on particle swarm optimization (PSO) and Powell technique was proposed to identify the parameters of the vector Preisach hysteresis model efficiently, which significantly improved the local optimization ability of the PSO algorithm. The simulation results are consistent with the measurement results, which verifies the effectiveness of the improved vector model and the parameter identification method proposed in this paper.
Key wordsSoft magnetic composite (SMC) material    vector Preisach hysteresis model    rotational magnetization    anisotropy    parameter identification   
收稿日期: 2020-04-16     
PACS: TM153  
基金资助:国家重点研发计划(2017YFB0902703)、国家自然科学基金(51777073)、河北省自然科学基金(E2017502061)、省部共建电工装备可靠性与智能化国家重点实验室(河北工业大学)开放课题基金(EERIKF2018011)和中央高校基本科研业务费(2019MS078)资助项目
通讯作者: 赵小军 男,1983年生,副教授,硕士生导师,研究方向为电工材料磁性能测量与模拟技术、频域数值计算方法、变压器直流偏磁及振动噪声问题、多物理场耦合模型及计算方法。E-mail: zxjncepu@ncepu.edu.cn   
作者简介: 徐华伟 女,1996年生,硕士研究生,主要研究方向为电磁场理论及其应用。E-mail: xhw@ncepu.edu.cn
引用本文:   
赵小军, 徐华伟, 刘小娜, 李永建, 杜振斌. 基于PSO-Powell混合算法的软磁复合材料二维矢量磁滞特性模拟[J]. 电工技术学报, 2021, 36(14): 2893-2903. Zhao Xiaojun, Xu Huawei, Liu Xiaona, Li Yongjian, Du Zhenbin. Two-Dimensional Vector Hysteresis Simulation of Soft Magnetic Composite Materials Based on the Hybrid Algorithm of PSO-Powell. Transactions of China Electrotechnical Society, 2021, 36(14): 2893-2903.
链接本文:  
https://dgjsxb.ces-transaction.com/CN/10.19595/j.cnki.1000-6753.tces.200377          https://dgjsxb.ces-transaction.com/CN/Y2021/V36/I14/2893