Growth Characteristics of Electric Tree for Nano-SiO2/Epoxy Resin Modified by Hyperbranched Polyester
Yang Guoqing1,2, Liu Geng1,2, Wang Deyi1,2, Wang Chuang1,2, Li Jiaxin3
1. State Key Laboratory Base of Eco-Hydraulic Engineering in Arid Area Xi’an University of Technology Xi’an 710048 China; 2. Institute of Water Resource and Hydroelectric Engineering Xi’an University of Technology Xi’an 710048 China; 3. State Grid Shaanxi Power Company Xi’an Power Supply Bureau Xi’an 710032 China
Abstract:In order to study the influence of Hyperbranched Polyester interface modification on the growth characteristics of electrical tree for nano-SiO2/EP, the nanocomposites filled with different content were prepared by chemical grafting and plasma assisted grafting. Then, the partial discharge and electrical tree development experiments were investigated by a needle-plate electrode system. Experimental results show that deep traps of 0.99~1.53eV are observed in the nanocomposites modified by plasma-assisted grafting. The partial discharge inception voltage reaches a peak value of 14.5kV at 3% filling content, which is 55.9% higher than that of pure EP. And the electrical tree resistance is optimal at 5% filling content. Moreover, the complexity of electrical tree is higher at the same filling content. This paper indicates that plasma-assisted grafting enhances the bond strength of the nanocomposites interface and introduces deep traps in the interface area, which in turn improves the electrical tree resistance of nano-SiO2/EP.
杨国清, 刘庚, 王德意, 王闯, 李嘉昕. 超支化聚酯改性纳米SiO2/环氧树脂的电树枝生长特性[J]. 电工技术学报, 2020, 35(20): 4415-4422.
Yang Guoqing, Liu Geng, Wang Deyi, Wang Chuang, Li Jiaxin. Growth Characteristics of Electric Tree for Nano-SiO2/Epoxy Resin Modified by Hyperbranched Polyester. Transactions of China Electrotechnical Society, 2020, 35(20): 4415-4422.
[1] 杜伯学, 韩晨磊, 李进, 等. 高压直流电缆聚乙烯绝缘材料研究现状[J]. 电工技术学报, 2019, 34(1): 179-191. Du Boxue, Han Chenlei, Li Jin, et al.Research status of polyethylene insulation for high voltage direct current cables[J]. Transactions of China Electro- technical Society, 2019, 34(1): 179-191. [2] 周远翔, 赵健康, 刘睿, 等. 高压/超高压电力电缆关键技术分析及展望[J]. 高电压技术, 2014, 40(9): 2593-2612. Zhou Yuanxiang, Zhao Jiankang, Liu Rui, et al.Key technical analysis and prospect of high voltage and extra-high voltage power cable[J]. High Voltage Engineering, 2014, 40(9): 2593-2612. [3] 于广, 施云波, 程羽佳, 等. 无机纳米ZnO或蒙脱土颗粒掺杂对低密度聚乙烯介电性能的影响[J]. 复合材料学报, 2018, 35(11): 3019-3033. Yu Guang, Shi Yunbo, Cheng Yujia, et al.Effects of inorganic nano ZnO or montmorillonite inorganic nanoparticles on dielectric properties of low density polyethylene[J]. Acta Materiae Compositae Sinica, 2018, 35(11): 3019-3033. [4] Alapati S, Thomas M J.Influence of nano-fillers on electrical treeing in epoxy insulation[J]. IET Science Measurement Technology, 2012, 6(1): 21-28. [5] Danikas M G, Tanaka T.Nanocomposites-a review of electrical treeing and breakdown[J]. IEEE Electrical Insulation Magazine, 2009, 25(4): 19-25. [6] 张晓虹, 石泽祥, 张双, 等. 基于局部放电特征研究蒙脱土/聚乙烯纳米复合材料的电树枝性能[J]. 电工技术学报, 2019, 34(23): 5049-5057. Zhang Xiaohong, Shi Zexiang, Zhang Shuang, et al.Investigation on electrical tree resistance property of montmorillonite/polyethylene nanocomposites based on partial discharge characteristics[J]. Transactions of China Electrotechnical Society, 2019, 34(23): 5049-5057. [7] 艾叶, 李春阳, 赵洪, 等. 纳米SiO2对交联聚乙烯交/直流击穿强度和耐电树枝性能影响[J]. 复合材料学报, 2019, 36(9): 2031-2041. Ai Ye, Li Chunyang, Zhao Hong, et al.Effects of nano SiO2 on AC/DC breakdown strength and elec- trical treeing resistance of cross-linked polyethylene[J]. Acta Materiae Compositae Sinica, 2019, 36(9): 2031-2041. [8] Akash Mohanty, Srivastava V K.Dielectric break- down performance of alumina/epoxy resin nanocom- posites under high voltage application[J]. Materials and Design, 2013, 47: 711-716. [9] 王旗, 李喆, 尹毅, 等. 微/纳米氧化铝/环氧树脂复合材料抑制电树枝生长能力的研究[J]. 电工技术学报, 2015, 30(6): 255-260. Wang Qi, Li Zhe, Yin Yi, et al.The effect of micro and nano alumina on the ability of impedance on the electrical tree of epoxy resin[J]. Transactions of China Electrotechnical Society, 2015, 30(6): 255-260. [10] Yamano Y, Iizuka M.Improvement of electrical tree resistance of LDPE by mixed addition of nano- particles and phthalocyanine[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2011, 18(1): 329-337. [11] Zhang Ling, Zhou Yuanxiang, Huang Meng, et al.Effect of Nanoparticle surface modification on charge transport characteristics in XLPE/SiO2 nanocom- posites[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2014, 21(2): 424-433. [12] 张明艳, 隋珊, 陈金玉, 等. 功能化碳纳米管/环氧树脂复合材料性能研究[J]. 电工技术学报, 2014, 29(4): 97-102. Zhang Mingyan, Sui Shan, Chen Jinyu, et al.Study of properties of functional multi-walled carbon nanotubes/ epoxy nanocomposites[J]. Transactions of China Electrotechnical Society, 2014, 29(4): 97-102. [13] 吴子剑, 王晨, 张明艳, 等. 环氧树脂纳米复合材料界面及其对电性能影响分析[J]. 电工技术学报, 2018, 33(16): 3897-3905. Wu Zijian, Wang Chen, Zhang Mingyan, et al.Interface of epoxy resin composites, and its influence on electrical performance[J]. Transactions of China Electrotechnical Society, 2018, 33(16): 3897-3905. [14] 田付强, 杨春, 何丽娟, 等. 聚合物/无机纳米复合电介质介电性能及其机理最新研究进展[J]. 电工技术学报, 2011, 26(3): 1-12. Tian Fuqiang, Yang Chun, He Lijuan, et al.Research progress on interfacce properties of polymer nano- dielectrics[J]. Transactions of China Electrotech- nical Society, 2011, 26(3): 1-12. [15] Huang Xingyi, Peng Peng, Peng Wenyi, et al.Thermal conductivity and dielectric properties of epoxy composites with hyperbranched polymer modified boron nitride nanoplatelets[C]//IEEE International Conference on Condition Monitoring and Diagnosis, Bali, Indonesia, 2012: 23-27. [16] 蒋玉梅, 陆绍荣, 张晨曦, 等. 环氧树脂/超支化聚酯/纳米SiO2复合材料的制备及性能[J]. 高分子材料科学与工程, 2010, 26(3): 134-137. Jiang Yumei, Lu Shaorong, Zhang Chenxi, et al.Preparation of epoxy resin/ hyperbranched polyester/ nano-silica composites[J]. Polymer Materials Science & Engineering, 2010, 26(3): 134-137. [17] Qi Zehao, Tan Yefa, Wang Haita, et al.Effects of noncovalently functionalized multiwalled carbon nanotube with hyperbranched polyesters on mechanical properties of epoxy composites[J]. Polymer Testing, 2017, 64: 38-47. [18] 张颖, 彭健, 林勇, 等. 长链超支化聚酯改性纳米SiO2及其在丁苯橡胶中的应用[J]. 高分子学报, 2016(6): 706-714. Zhang Ying, Peng Jian, Lin Yong, et al.Preparation of hyperbranched polyester modified nano-SiO2 and its application in SBR[J]. Acta Polymerica Sinica, 2016(6): 706-714. [19] 杨国清, 黎洋, 王德意, 等. 超支化聚酯改性纳米SiO2/环氧树脂的介电特性[J]. 电工技术学报, 2019, 34(5): 1106-1115. Yang Guoqing, Li Yang, Wang Deyi, et al.Effect of hyperbranched polyester grafting nanosilica on dielectric properties of epoxy resin[J]. Transactions of China Electrotechnical Society, 2019, 34(5): 1106-1115. [20] Yang Guoqing, Cui Junda, Ohki Yoshimichi, et al.Dielectric and relaxation properties of composites of epoxy resin and hyperbranched-polyester-treated nanosilica[J]. RSC Advances, 2018, 8(54): 30669-30677. [21] 戴栋, 宁文军, 邵涛. 大气压低温等离子体的研究现状与发展趋势[J]. 电工技术学报, 2017, 32(20): 1-9. Dai Dong, Ning Wenjun, Shao Tao.A review on the state of art and future trends of atmospheric pressure low temperature plasmas[J]. Transactions of China Electrotechnical Society, 2017, 32(20): 1-9. [22] Bazaka K, Jacob M V, Chrzanowski W, et al.Anti- bacterial surfaces: natural agents, mechanisms of action, and plasma surface modification[J]. RSC Advances, 2015, 5(60): 48739-48759. [23] 章程, 邵涛, 于洋, 等. 纳秒脉冲介质阻挡放电特性及其聚合物材料表面改性[J]. 电工技术学报, 2010, 25(5): 31-37. Zhang Cheng, Shao Tao, Yu Yang, et al.Characteri- stics of unipolar nanosecond pulse DBD and its application on surface treatment of polyimer films[J]. Transactions of China Electrotechnical Society, 2010, 25(5): 31-37. [24] Ding Yong, Chen Yu, Zheng Junping, et al.Dis- persion of nanoparticles in polymer matrices with well-designed ligands as dispersant/emulsifier/com- onomer[J]. Composites Science and Technology, 2018, 156: 215-222. [25] Yao Lingmin, Pan Zhongbin, Zhai Jiwei, et al.High- energy-density with polymer nanocomposites con- taining of SrTiO3 nanofibers for capacitor appli- cation[J]. Composites Part A: Applied Science and Manufacturing, 2018, 109: 48-54. [26] Hu Penghao, Gao Shengmin, Zhang Yangyang, et al.Surface modified BaTiO3 nanoparticles by titanate coupling agent induce significantly enhanced break- down strength and larger energy density in PVDF nanocomposite[J]. Composites Science and Technology, 2018, 156: 109-116. [27] Takada T, Hayase Y, Tanaka Y, et al.Space charge trapping in electrical potential well caused by permanent and induced dipoles for LDPE/MgO nanocomposite[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2008, 15(1): 152-160. [28] Yu Shihu, Li Shengtao, Wang Shihang, et al.Surface flashover properties of epoxy based nanocomposites containing functionalized nano-TiO2[J]. IEEE Transa- ctions on Dielectrics and Electrical Insulation, 2018, 25(4): 1567-1576. [29] Kalathi J T, Kumar S K, Rubinstein M, et al.Rouse mode analysis of chain relaxation in polymer nano- composites[J]. Soft Matter, 2015, 11(20): 4123-4132. [30] 任浩, 王珏, 严萍. 重频纳秒脉冲下有机玻璃电树枝老化特性的实验研究[J]. 电工电能新技术, 2008, 27(4): 32-35, 67. Ren Hao, Wang Jue, Yan Ping.Study on electrical tree in PMMA under repetitive nanosecond pulses[J]. Advanced Technology of Electrical Engineering and Energy, 2008, 27(4): 32-35, 67.