Numerical Study on Flow-Heat Transfer of Oil-Immersed Transformer Based on Multiple-Scale and Multiple-Physical Fields
Zeng Feitong1, Guan Xiangyu2, Huang Yizheng3, Peng Hui3, Pan Rui1
1. China Electric Power Research Institute Wuhan 430074 China; 2. College of Electrical Engineering and Automation Fuzhou University Fuzhou 350180 China; 3. School of Electrical Engineering Wuhan University Wuhan 430072 China
Abstract:In order to improve the performance of oil-immersed transformer and explore working characteristics of internal temperature field and flow field, a multi-physical field coupling method based on eddy-temperature-flow field is proposed and an internal fluid-heat transfer calculation model of oil-immersed transformer is established in this paper. Finite difference method (FDM) is used to calculate eddy current field in transformer. Lattice boltzmann method (LBM) is used to calculate temperature-flow field of transformer. On the macro, the method realized solid-liquid boundary heat transfer with the units of kelvin. On the mesoscopic, the method was used to calculate the temperature transfer and oil flow in solid domain and insulating oil fluid domain with the units of dimensionless LBM molecular distribution function. By this method, fluid-solid temperature coupled heat transfer based on macroscopic-mesoscopic unit scale variation was calculated, and the operating characteristics of temperature field and flow field in oil-immersed transformer were analyzed. This paper designed a transformer flow-heat transfer simulation experiment to verify the proposed model. It is shown that since the iteration of LBM algorithm requires the diffusion lattice density to cover the calculation area, the temperature rise is not obvious at the early calculation stage and cannot effectively fit the operating characteristics of the internal temperature field and flow field of the oil-immersed transformer. After a certain number of iterations, the calculation error is within 5% and can effectively fit the transformer operating characteristics. This algorithm model has some engineering significance to prevent the internal fault of oil-immersed transformer and reduce the internal overheating accident of oil-immersed transformer.
曾非同, 关向雨, 黄以政, 彭辉, 潘瑞. 基于多尺度多物理场的油浸式变压器流动-传热数值研究[J]. 电工技术学报, 2020, 35(16): 3436-3444.
Zeng Feitong, Guan Xiangyu, Huang Yizheng, Peng Hui, Pan Rui. Numerical Study on Flow-Heat Transfer of Oil-Immersed Transformer Based on Multiple-Scale and Multiple-Physical Fields. Transactions of China Electrotechnical Society, 2020, 35(16): 3436-3444.
[1] 常怡东. 非晶合金变压器铁心碎片引起绝缘故障机理的研究[D]. 武汉: 武汉大学, 2017. [2] 彭道刚, 陈跃伟, 钱玉良, 等. 基于粒子群优化-支持向量回归的变压器绕组温度软测量模型[J]. 电工技术学报, 2018, 33(8): 1742-1749. Peng Daogang, Chen Yuewei, Qian Yuliang, et al.Transformer winding temperature soft measurement model based on particle swarm optimization-support vector regression[J]. Transactions of China Electro- technical Society, 2018, 33(8): 1742-1749. [3] 麻守孝, 唐炬, 张明君, 等. 牵引变压器中运动金属颗粒群的分布状态及影响因素仿真研究[J]. 高电压技术, 2015, 41(11): 3628-3634. Ma Shouxiao, Tang Ju, Zhang Mingjun, et al.Simulation study on distribution and influence factors of metal particles in traction transformer[J]. High Voltage Engineering, 2015, 41(11): 3628-3634. [4] 麻守孝. 绝缘油中金属颗粒在流动状态下产生的局部放电特性及影响因素研究[D]. 重庆: 重庆大学, 2016. [5] Yatsevsky V A.Hydrodynamics and heat transfer in cooling channels of oil-filled power transformers with multicoil windings[J]. Applied Thermal Engin- eering, 2014, 63(1): 347-353. [6] 曲延鹏, 张坤, 陈颂英. MRT-LBM三重网格局部加密算法研究[J]. 北京理工大学学报, 2018, 38(5): 441-448. Qu Yanpeng, Zhang Kun, Chen Songying.Research on three-block local grid refinement method in MRT-LBM[J]. Transactions of Beijing Institute of Technology, 2018, 38(5): 441-448 [7] Abbas Fakhari, Taehun Lee.Numerics of the lattice Boltzmann method on nonuniform grids: standard LBM and finite-difference LBM[J]. Computers & Fluids, 2015, 107: 205-213. [8] 胡静竹, 刘涤尘, 廖清芬, 等. 基于有限元法的变压器电磁振动噪声分析[J]. 电工技术学报, 2016, 31(15): 82-88. Hu Jingzhu, Liu Dichen, Liao Qingfen, et al.Analysis of transformer electromagnetic vibration noise based on finite element method[J]. Transactions of China Electrotechnical Society, 2016, 31(15): 82-88. [9] 齐伟强, 李俭, 陈柏超, 等. 基于COMSOL的变压器中超声波传播特性[J]. 电工技术学报, 2015, 30(2): 195-200. Qi Weiqiang, Li Jian, Chen Baichao, et al.Ultrasonic wave propagation characteristics of the transformer based on COMSOL[J]. Transactions of China Elec- trotechnical Society, 2015, 30(2): 195-200. [10] 梁振光, 唐任远. 采用场路耦合的三维有限元法分析变压器突发短路过程[J]. 中国电机工程学报, 2003, 23(3): 137-140. Liang Zhenguang, Tang Renyuan.Fault simulation of power transformers using 3D finite element model coupled to electric circuit equations[J]. Proceedings of the CSEE, 2003, 23(3): 137-140. [11] Fang Fuxin, Guan Weimin, Qian Hang, et al.The heat transfer characteristics of transformer vegetable oil-based nanofluid[C]//IEEE International Conference on High Voltage Engineering and Application, Chengdu, China, 2016: 1-4. [12] 乔骥, 邹军, 袁建生, 等. 采用有限差分求解高压直流输电线路空间离子流场的新方法[J]. 电工技术学报, 2015, 30(6): 85-91. Qiao Yi, Zhou Jun, Yuan Jiansheng, et al.A new finite difference based approach for calculating ion flow field of HVDC transmission lines[J]. Transa- ctions of China Electrotechnical Society, 2015, 30(6): 85-91. [13] 何雅玲, 李庆, 王勇, 等. 格子Boltzmann方法的工程热物理应用[J]. 科学通报, 2009, 54(18): 2638-2656. He Yaling, Li Qing, Wang Yong, et al.Lattice Boltzmann method and its applications in engineering thermophysics[J]. Chinese Science Bull, 2009, 54(18): 2638-2656. [14] Mohamad A A.Lattice Boltzmann method[M]. Berlin: Springer, 2007. [15] 刘克同, 汤爱平, MIONKI Patrick Kirema.基于LBM流固耦合算法的桥梁颤振稳定性分析[J]. 四川大学学报: 英语科学版, 2014, 46(5): 74-80. Liu Ketong, Tang Aiping, MIONKI Patrick Kirema.Numerical investigation for flutter instability of bridge using FSI model within the lattice Boltzmann framework[J]. Journal of Sichuan University: Engin- eering Science Edition, 2014, 46(5): 74-80. [16] 刘智翔, 宋安平, 徐磊, 等. 多重网格格子Boltzman方法的并行算法[J]. 计算机应用, 2014, 34(11): 3065-3068. Liu Zhixiang, Song Anping, Xu lei, et al. Parallel algorithms for multi-grid lattice Boltzmann method[J]. Journal of Computer Applications, 2014, 34(11): 3065-3068. [17] 杨世铭, 陶文铨. 传热学[M]. 北京: 高等教育出版社, 2006. [18] Simon Bogner, Regina Ammer, Ulrich Rüde.Boundary conditions for free interfaces with the lattice Boltzmann method[J]. Journal of Computational Physics, 2015, 297: 1-12. [19] 唐宇. 大型电力变压器附加损耗与温度场分析[D]. 哈尔滨: 哈尔滨理工大学, 2017. [20] 苏小平. 油浸式变压器绕组热点温度计算模型及预测方法研究[D]. 重庆: 重庆大学, 2012. [21] Xu Huijin, Xing Zhanbin.The lattice Boltzmann modeling on the nanofluid natural convective trans- port in a cavity filled with a porous foam[J]. Inter- national Communications in Heat and Mass Transfer, 2017, 89: 73-82. [22] 宁致远, 沈欣军, 李树然, 等. 湿式除尘器内部湍流场与粒子轨迹的数值分析[J]. 浙江大学学报: 工学版, 2017, 2: 384-392. Ning Zhiyuan, Shen Xinjun, Li Shuran, et al.Numerical analysis of turbulence field and particle trajectory inside wet electrostatic precipitator[J]. Journal of Zhejiang University: Engineering Science, 2017, 2: 384-392.