电工技术学报  2019, Vol. 34 Issue (17): 3651-3660    DOI: 10.19595/j.cnki.1000-6753.tces.181150
电力系统运行与规划 |
复杂噪声条件下基于抗差容积卡尔曼滤波的发电机动态状态估计
李扬1, 李京1, 陈亮2, 李国庆1
1. 东北电力大学电气工程学院 吉林 132012;
2. 国网河北省电力有限公司经济技术研究院 石家庄 050022
Dynamic State Estimation of Synchronous Machines Based on Robust Cubature Kalman Filter under Complex Measurement Noise Conditions
Li Yang1, Li Jing1, Chen Liang2, Li Guoqing1
1. School of Electrical Engineering Northeast Electric Power University Jilin 132012 China;
2. State Grid Hebei Economic Research Institute Shijiazhuang 050022 China
全文: PDF (1713 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 容积卡尔曼滤波(CKF)在非线性动态状态估计领域有着良好的估计效果。但由于容积卡尔曼滤波缺乏对量测噪声特性的在线自适应能力,其对不良数据和非高斯白噪声的处理效果并不理想。为了解决当量测量统计特性偏离先验统计特性时,容积卡尔曼滤波算法性能下降和发散的问题,通过将抗差估计理论中的M-估计理论与容积卡尔曼滤波相结合,提出抗差容积卡尔曼滤波(RCKF)算法,并将其尝试应用于复杂噪声条件下的发电机动态状态估计中。IEEE 9节点系统和新英格兰16机68节点系统的仿真结果表明:在不同量测噪声且量测量存在不良数据的复杂噪声条件下,与传统CKF算法相比,所提抗差CKF算法均具有更好的估计精度和收敛能力,并能有效消除不良数据对估计效果的影响。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
李扬
李京
陈亮
李国庆
关键词 动态状态估计发电机容积卡尔曼滤波M-估计理论量测噪声分布不良数据相量测量单元数据    
Abstract:Cubature Kalman filter (CKF) has good performance when handling nonlinear dynamic state estimations. However, it cannot work well in non-Gaussian noise and bad data environment due to the lack of auto-adaptive ability to measure noise statistics on line. In order to address the problem of behavioral decline and divergence when measure noise statistics deviate prior noise statistics, a new robust CKF (RCKF) algorithm is developed by combining the Huber’s M-estimation theory with the classical CKF, and thereby it is proposed to coping with the dynamic state estimation of synchronous generators in this study. The simulation results on the IEEE-9 bus system and New England 16-machine-68-bus system demonstrate that the estimation accuracy and convergence of the proposed RCKF are superior to those of the classical CKF under complex measurement noise environments including different measurement noises and bad data, and that the RCKF is capable of effectively eliminating the impact of bad data on the estimation effects.
Key wordsDynamic state estimation    synchronous machines    cubature Kalman filter    M-estimation theory    measure noise statistics    bad data    phasor measurement units data   
收稿日期: 2018-07-04      出版日期: 2019-09-20
PACS: TM71  
基金资助:国家重点研发计划(2017YFB0902401)和国家自然科学基金(51677023)资助
通讯作者: 李扬 男,1980年生,博士,副教授,研究方向为电力系统运行分析与控制。E-mail:liyang@neepu.edu.cn   
作者简介: 李京 男,1990年生,硕士研究生,研究方向为电力系统运行分析与控制。E-mail:1771104937@qq.com
引用本文:   
李扬, 李京, 陈亮, 李国庆. 复杂噪声条件下基于抗差容积卡尔曼滤波的发电机动态状态估计[J]. 电工技术学报, 2019, 34(17): 3651-3660. Li Yang, Li Jing, Chen Liang, Li Guoqing. Dynamic State Estimation of Synchronous Machines Based on Robust Cubature Kalman Filter under Complex Measurement Noise Conditions. Transactions of China Electrotechnical Society, 2019, 34(17): 3651-3660.
链接本文:  
https://dgjsxb.ces-transaction.com/CN/10.19595/j.cnki.1000-6753.tces.181150          https://dgjsxb.ces-transaction.com/CN/Y2019/V34/I17/3651