Abstract:According to the phenomenon of overvoltage observed in the emission experiment, based on the circuit structure, the characteristics of the main components and the load characteristics of the electrothermal-chemical gun in the system, the mechanism of overvoltage was obtained through the contrast test, resistance measurement of the plasma generator, the equivalent parameter measurement and the theoretical analysis. The studies show that the overvoltage phenomenon occurs only during the firing processof electrothermal-chemical gun, which is directly related to the characteristics of the generator in the gun bore. The studies also show that the mechanism of overvoltage is caused by the broken arc of generator surface where the electric arc is forced to go out by environmentin thegun chamber at the end of the pulse discharge and the load mutation occurs,resulting in overvoltage inside the system. Then the residual magnetic energy of pulse forming inductor is converted into the electric energy of stray capacity in the system, which causes electromagnetic oscillation. According to the characteristics of the main components, the influence of overvoltage on insulation coordination was briefly analyzed and the harm caused by overvoltage was summarized. The overvoltage snubbercircuits were designed, which include resistance-capacitance circuit, buffer resistor and buffer inductor. The experimental resultsthat the buffer circuits can effectively suppress the overvoltagecaused by thebroken arc of generatorsurface during the launching process. The electrothermal-chemical launch technology is currently developing towards engineering application. The research results can be used to guide the miniaturization design of insulation in the launching system and help to improve the reliability of the system.
李贞晓, 金涌, 田慧栗, 保明. 电热化学发射中的过电压现象与机理研究[J]. 电工技术学报, 2018, 33(5): 1177-1184.
Li Zhenxiao, Jin Yong, TianHuiLi, Baoming. Study on Phenomenon and Mechanism of Overvoltage in Electrothermal-Chemical Launch. Transactions of China Electrotechnical Society, 2018, 33(5): 1177-1184.
[1] Winfrey A L,Al-Halim M A A, Mittal S, et al. Study of high-enthalpy electrothermal energetic plasma source concept[J]. IEEE Transactions on Plasma Science, 2015, 43(7): 2195-2220. [2] 刘克富, 潘垣, 李劲松, 等.补偿脉冲发电机为主体的电热化学炮系统模拟和试验[J]. 电工技术学报, 2000,15(2): 24-28. Liu Kefu, Pan Yuan, Li Jinsong, et al.System simulations and experiments for electro-thermal chemical guns powered by compensated pulsed alternators[J]. Transactions of China ElectrotechnicalSociety, 2000, 15(2): 24-28. [3] Ni Yanjie, Jin Yong, Yang Chunxia, et al.Application of transient burning rate model of solid propellant in electrothermal-chemical launch simulation[J]. DefenceTechnology, 2016, 12(2): 81-85. [4] Porwitzky A J, Keidar M, BoydI D. Modeling of the plasma-propellant interaction[J]. IEEE Transactions on Magnetics, 2007, 43(1): 313-317. [5] 倪琰杰, 程年恺, 金涌,等. 30mm电热化学炮膛内压力波数值模拟研究[J]. 兵工学报, 2016, 37(9): 1578-1584. Ni Yanjie, Cheng Niankai, Jin Yong, et al.Numerical simuliaation on pressure wave in a 30mm electrothermal-chemical gun[J]. ActaArmamentarii, 2016, 37(9): 1578-1584. [6] Kim S H, Yang K S, Lee Y H, et al.ETC ignition research on 120 mm gun in Korea[J]. IEEE Transactions on Magnetics, 2009, 45(1): 341-346. [7] Dyvik J, Herbig J, Appleton R.Recent activities in electro-thermal chemical launcher technologies at BEA systems[J]. IEEE Transactions on Magnetics, 2007, 43(1): 303-307. [8] Weise T H G G, Maag J, Zimmermann G, et al. National overview of the German ETC program[J]. IEEE Transactions on Magnetics, 2003, 39(1):35-37. [9] Lehmann P.Overview of the electric launcher activities at the French-German research institute of Saint-Louis[J]. IEEE Transactions on Magnetics, 2003, 39(1): 24-28. [10] 李鸿志. 电热发射技术的研究进展[J]. 南京理工大学学报, 2003, 27(5): 449-465. Li Hongzhi.Progress in the research of electrothermal chemical launch technology[J]. Journal of Nanjing University of Science and Technology, 2003, 27(5): 449-465. [11] Jin Y S, Kim Y B, Kim J S, et al.Fabrication and testing of a 600-kJ pulsed power system[J]. IEEE Transactions on Plasma Science, 2013, 41(10): 2671-2674. [12] 李超,鲁军勇, 马伟明, 等.电磁发射用多级混合储能充电策略优化[J]. 电工技术学报, 2017, 32(13): 118-124. Li Chao, Lu Junyong, MaWeiming, et al. Charging strategy amelioration of multilevel hybrid energy storage for electromagnetic launch[J]. Transactions of China ElectrotechnicalSociety, 2017, 32(13): 118-124. [13] Jin Y S, Lee H S, Kim J S, et al.Performance of 2.4-MJ pulsed power system for electrothermal-chemical gun application[J]. IEEE Transactions on Magnetic, 2003, 39(1):235-238. [14] 马山刚,于歆杰, 李臻. 用于电磁发射的电感储能型脉冲电源的研究现状综述[J]. 电工技术学报, 2015, 30(24):222-228. Ma Shangang, Yu Xinjie, Li Zhen.A review of the current research situation of inductive pulsed-power supplies for electromagnetic launch[J]. Transactions of China ElectrotechnicalSociety, 2015, 30(24): 222-228. [15] 赵纯,邹积岩, 何俊佳, 等. 三级重接式电磁发射系统的仿真与实验[J]. 电工技术学报, 2008, 23(5): 1-6. Zhao Chun, ZouJiyan, He Junjia, et al. Simulation and experimental research of a three-stage reconnection electromagnetic launch system[J]. Transactions of China ElectrotechnicalSociety, 2008, 23(5): 1-6. [16] 刘旭堃, 于歆杰, 刘秀成, 等. 电磁轨道炮运行阶段系统发射效率和电枢出膛动能研究[J]. 电工技术学报, 2017, 32(2):211-217. Liu Xukun, Yu Xinjie, Liu Xiucheng, et al.Researches on the system launch efficiency and the armature muzzle kinetic energy of a constructed electromagnetic railgun[J]. Transactions of China ElectrotechnicalSociety, 2017, 32(2):211-217. [17] 李军, 严萍, 袁伟群. 电磁轨道炮发射技术的发展与现状[J]. 高电压技术, 2014, 40(4):1052-1064. Li Jun, Yan Ping, YuanWeiqun. Electromagnetic gun technology and its development[J]. High Voltage Engineering, 2014, 40(4):1052-1064. [18] 刘旭堃, 于歆杰, 刘秀成. 电容储能型脉冲电源分时段触发策略自动计算方法[J]. 电工技术学报, 2016, 31(11): 187-193. Liu Xukun, Yu Xinjie, Liu Xiucheng.An automatic calculation method for the triggering strategy of the capacitive pulsed-power supply[J]. Transactions of China ElectrotechnicalSociety, 2016, 31(11):187-193. [19] 李贞晓, 张亚舟, 高粱, 等. 电热化学发射中硅堆故障试验分析[J]. 兵工学报, 2015, 36(4): 577-581. Li Zhenxiao, Zhang Yazhou, GaoLiang, et al. Test and analysis of silicon stack failure in electrothermal-chemicallaunch[J]. ActaArmamentarii, 2015, 36(4):577-581. [20] Wang Junde, Li Baoming, GuBinghe, et al. The study on the arc plasma temperature measurement by optical emission spectroscopy with fiber optical transmission[J]. Spectroscopy Letters, 1998, 31(1):243-252. [21] 刘恩科, 朱秉升, 罗晋生. 半导体物理学[M]. 北京: 国防工业出版社, 2010. [22] 何雨微, 瞿佥炜, 刘亚坤, 等. 后续回击下限压型浪涌保护器的伏安特性及其级联配合[J]. 电工技术学报, 2017, 32(1):197-205. He Yuwei, QuQianwei, Liu Yakun, et al. The V-I characteristics of voltage-limiting type SPD and its cascaded coordination under subsequent lightning return stroke[J]. Transactions of China Electrotechnical society, 2017,32(1):197-205. [23] 唐宗华, 谭震宇, 孙树敏, 等.大容量金属氧化物限压器通风冷却结构优化设计与计算分析[J]. 电工技术学报, 2013, 28(3):161-170. Tang Zonghua, Tan Zhenyu, Sun Shumin, et al.Calculation and analysis on ventilation structure of different optimum proposals in large capacity metal oxide varistor[J]. Transactions of China ElectrotechnicalSociety, 2013,28(3):161-170.