Abstract:Due to high switching speed and low on-resistance, the switching transient process of SiC MOSFETs is susceptible to the influences of circuit-level stray parameters and exhibits significant overvoltage, overcurrent and switching rings, which degrades the high-efficiency, high-quality and safe application and potential utilization of SiC MOSFETs. Half-bridge circuit is the fundamental modular for PWM rectifiers, inverters, multi-level converters and so on. Taking half-bridge configuration for example, the switching transient behavior of SiC MOSFETs in power electronic circuits is thoroughly examined based on measured results. The analytical model to calculate the transient current and voltage in the SiC MOSFET half-bridge configuration was derived, integrating the influences of the main parasitic parameters of the circuit, the nonlinear characteristics of the device junction capacitances and transconductance. Based on the model, the influences and their influencing rules of gate loop parameters and power loop parameters on current and voltage overshoot peaks were quantitatively explored. Then the sensitivity analysis results was presented. Simulation and experimental results validate the correctness of the derived analytical model and the theoretical analysis.
王莉娜, 马浩博, 袁恺, 刘壮, 邱宏程. SiC MOSFET半桥电路开关瞬态过电流、过电压建模与影响因素分析[J]. 电工技术学报, 2020, 35(17): 3652-3665.
Wang Lina, Ma Haobo, Yuan Kai, Liu Zhuang, Qiu Hongcheng. Modeling and Influencing Factor Analysis of SiC MOSFET Half-Bridge Circuit Switching Transient Overcurrent and Overvoltage. Transactions of China Electrotechnical Society, 2020, 35(17): 3652-3665.
[1] 盛况, 郭清, 张军明, 等. 碳化硅电力电子器件在电力系统的应用展望[J]. 中国电机工程学报, 2012, 32(30): 1-7. Sheng Kuang, Guo Qing, Zhang Junming, et al.Development and prospect of SiC power devices in power grid[J]. Proceedings of the CSEE, 2012, 32(30): 1-7. [2] Yin Shan, Tseng K J, Simanjorang R, et al.A 50-kW high-frequency and high-efficiency SiC voltage source inverter for more electric aircraft[J]. IEEE Transactions on Industrial Electronics, 2017, 64(11): 9124-9134. [3] Hazra S, De A, Cheng Lin, et al.High switching performance of 1700V, 50A SiC power MOSFET over Si IGBT/BiMOSFET for advanced power conversion applications[J]. IEEE Transactions on Power Electronics, 2016, 31(7): 4742-4754. [4] Zhang Lei, Yuan Xibo, Wu Xiaojie, et al.Performance evaluation of high-power SiC MOSFET modules in comparison to Si IGBT modules[J]. IEEE Transactions on Power Electronics, 2019, 34(2): 1181-1196. [5] 王莉娜, 邓洁, 杨军一, 等. Si和SiC功率器件结温提取技术现状及展望[J]. 电工技术学报, 2019, 34(4): 71-84. Wang Lina, Deng Jie, Yang Junyi, et al.Junction temperature extraction methods for Si and SiC power devices—a review and possible alternatives[J]. Transactions of China Electrotechnical Society, 2019, 34(7): 71-84. [6] Ahmed M R, Todd R, Forsyth A J.Predicting SiC MOSFET behavior under hard-switching, soft-switching, and false turn-on conditions[J]. IEEE Transactions on Industrial Electronics, 2017, 64(11): 9001-9011. [7] Cittanti D, Iannuzzo F, Hoene E, et al.Role of parasitic capacitances in power MOSFET turn-on switching speed limits: a SiC case study[C]//IEEE Energy Conversion Congress and Exposition (ECCE), Cincinnati, OH, 2017: 1387-1394. [8] 梁美, 李艳, 郑琼林, 等. 桥式电路中不同封装SiC MOSFET串扰问题分析及低栅极关断阻抗的驱动电路[J]. 电工技术学报, 2017, 32(18): 162-174. Liang Mei, Li Yan, Zheng Qionglin, et al.Analysis for crosstalk of SiC MOSFET with different packages in a phase-leg configuration and a low gate turn-off impedance driver[J]. Transactions of China Electrotechnical Society, 2017, 32(18): 162-174 [9] 李辉, 黄樟坚, 廖兴林, 等. 一种抑制SiC MOSFET桥臂串扰的改进门极驱动设计[J]. 电工技术学报, 2019, 34(2): 77-87. Li Hui, Huang Zhangjian, Liao Xinglin, et al.An improved SiC MOSFET gate driver design for crosstalk suppression in a phase-leg configuration[J]. Transactions of China Electrotechnical Society, 2019, 34(8): 77-87. [10] Yang Fei, Wang Zhiqiang, Zhang Zheyu, et al.Analysis and experimental evaluation of middle-point inductance's effect on switching transients for multiple-chip power module package[J]. IEEE Transactions on Power Electronics, 2019, 34(7): 6613-6627. [11] Jiang Dong, Burgos R, Wang Fei, et al.Temperature-dependent characteristics of sic devices: performance evaluation and loss calculation[J]. IEEE Transactions on Power Electronics, 2012, 27(2): 1013-1024. [12] 孙凯, 陆珏晶, 吴红飞, 等. 碳化硅MOSFET的变温度参数建模[J]. 中国电机工程学报, 2013, 33(3): 37-43. Sun Kai, Lu Juejing, Wu Hongfei, et al.Modeling of SiC MOSFET with temperature dependent parameters[J]. Proceedings of the CSEE, 2013, 33(3): 37-43. [13] Gonzalez J O, Alatise O, Hu Ji, et al.An investigation of temperature sensitive electrical parameters for SiC power MOSFETs[J]. IEEE Transactions on Power Electronics, 2017, 32(10): 7954-7966. [14] Ji Shiqi, Zheng Sheng, Wang Fei, et al.Temperature-dependent characterization, modeling, and switching speed-limitation analysis of third-generation 10-kV SiC MOSFET[J]. IEEE Transactions on Power Electronics, 2018, 33(5): 4317-4327. [15] Han Di, Sarlioglu B.Comprehensive study of the performance of SiC MOSFET-based automotive DC-DC converter under the influence of parasitic inductance[J]. IEEE Transactions on Industry Applications, 2016, 52(6): 5100-5111. [16] 曾正, 邵伟华, 陈昊, 等. 基于栅极驱动回路的SiC MOSFET开关行为调控[J]. 中国电机工程学报, 2018, 38(4): 1165-1176. Zeng Zheng, Shao Weihua, Chen Hao, et al.On-off behavior control of SiC MOSFET by gate drive loops[J]. Proceedings of the CSEE, 2018, 38(4): 1165-1176. [17] 王旭东, 朱义诚, 赵争鸣, 等. 驱动回路参数对碳化硅MOSFET开关瞬态过程的影响[J]. 电工技术学报, 2017, 32(13): 23-30. Wang Xudong, Zhu Yicheng, Zhao Zhengming, et al.Impact of gate-loop parameters on the switching behavior of SiC MOSFETs[J]. Transactions of China Electrotechnical Society, 2017, 32(13): 23-30. [18] Zhang Zheyu, Wang F, Tolbert L M, et al.Evaluation of switching performance of SiC devices in PWM inverter-fed induction motor drives[J]. IEEE Transactions on Power Electronics, 2015, 30(10): 5701-5711. [19] 朱义诚, 赵争鸣, 王旭东, 等. SiC MOSFET 与SiC SBD 换流单元瞬态模型[J] . 电工技术学报, 2017, 32(12): 58-69. Zhu Yicheng, Zhao Zhengming, Wang Xudong, et al.Analytical transient model of commutation units with SiC MOSFET and SiC SBD pair[J]. Transactions of China Electrotechnical Society, 2017, 32(12): 58-69. [20] Wang Jianjing, Chung H S, Li R T.Characterization and experimental assessment of the effects of parasitic elements on the MOSFET switching performance[J]. IEEE Transactions on Power Electronics, 2013, 28(1): 573-590. [21] Chen Kainan, Zhao Zhengming, Yuan Liqiang, et al.The impact of nonlinear junction capacitance on switching transient and its modeling for SiC MOSFET[J]. IEEE Transactions on Electron Devices, 2015, 62(2): 333-338. [22] Cree. C3M0075120K silicon carbide power MOSFET C3M MOSFET technology[R]. 2017. [23] McNutt T R, Hefner A R, Mantooth H A, et al. Silicon carbide power MOSFET model and parameter extraction sequence[J]. IEEE Transactions on Power Electronics, 2007, 22(2): 353-363. [24] Cree. Design considerations for designing with Cree SiC modules part.1 understanding the effects of parasitic inductance[R]. 2013. [25] Zwillinger D.CRC standard mathematical tables and formulas[M]. 3rd ed. Boca Raton, FL, USA: CRC Press, 2017.