Design of Generation Controller of Air-Cooled Self-Humidifying Proton Exchange Membrane Fuel Cell
You Zhiyu1, Liu Tao2, Shi Qing2, Li Qi2
1. School of Electrical Information Engineering Southwest University for Nationalities Chengdu 610041 China; 2. School of Electrical Engineering Southwest Jiaotong University Chengdu 610031 China
Abstract:According to the characteristics of proton exchange membrane fuel cell (PEMFC), a general controller based on STM32F103 is designed to control the electricity generation of PEMFC in this paper. In accordance with the designed control strategy, the controller can output real-time control signals to control the stable PEMFC operation by sampling the parameters such as temperature, output current and output voltage, etc. With experimental verification, it turns out that the controller has reliable operation and good monitoring performance, which provides an embedded control method for electricity generation of the PEMFC.
游志宇, 刘涛, 史青, 李奇. 空冷自增湿质子交换膜燃料电池发电控制器设计[J]. 电工技术学报, 2018, 33(2): 442-450.
You Zhiyu, Liu Tao, Shi Qing, Li Qi. Design of Generation Controller of Air-Cooled Self-Humidifying Proton Exchange Membrane Fuel Cell. Transactions of China Electrotechnical Society, 2018, 33(2): 442-450.
[1] 费智. 国际新能源发展现状及展望[J]. 上海电力学院学报, 2014(1): 1-5. Fei Zhi. Status quo of international new energy development and future prospects[J]. Journal of Shanghai University of Electric Power, 2014(1): 1-5. [2] 张玉卓. 中国清洁能源的战略研究及发展对策[J]. 中国科学院院刊, 2014(4): 429-436. Zhang Yuzhuo. Study on the strategy and deve- lopment countermeasure of China clean energy[J]. Bulletin of Chinese Academy of Sciences, 2014(4): 429-436. [3] Peighambardoust S J, Rowshanzamir S, Amjadi M. Review of the proton exchange membranes for fuel cell applications[J]. Journal of Hydrogen Energy, 2010, 35(17): 9349-9384. [4] 李奇, 陈维荣, 刘述奎, 等. 燃料电池混合动力车辆多能源管理策略[J]. 电工技术学报, 2011, 26(1): 303-308. Li Qi, Chen Weirong, Liu Shukui, et al. Energy management strategy for hybrid vehicle based on fuel cell[J]. Transactions of China Electrotechnical Society, 2011, 26(1): 303-308. [5] 金科, 阮新波, 杨孟雄, 等. 复合式燃料电池供电系统[J]. 电工技术学报, 2008, 23(3): 92-98. Jin Ke, Ruan Xinbo, Yang Mengxiong, et al. Hybrid fuel cell power system[J]. Transactions of China Electrotechnical Society, 2008, 23(3): 92-98. [6] 刘述奎, 韩莹, 李奇, 等. 基于双二阶广义积分锁相环的燃料电池并网系统研究[J]. 电力系统保护与控制, 2014, 42(5): 122-128. Liu Shukui, Han Ying, Li Qi, et al. Fuel cell grid-connected system based on dual second order generalized integrator phase locked loop[J]. Power System Protection and Control, 2014, 42(5): 122-128. [7] 张晓峰, 吕征宇. 混合动力车用全数字电流控制型双向DC-DC变换器[J]. 电工技术学报, 2009, 24(8): 84-89. Zhang Xiaofeng, Lü Zhengyu. Digital current- controlled bi-directional DC-DC converter in the hybrid electric vehicle[J]. Transactions of China Electrotechnical Society, 2009, 24(8): 84-89. [8] Han H S, Kim Y H, Kim S Y, et al. Development of proton exchange membrane fuel cell system for portable refrigerator[C]//Proceedings of the Fuel Cell Seminar and Exposition, Orlando FL, 2011, 42(1): 149-153. [9] Elham H, Masoud R. Development and validation of a simple analytical model of the proton exchange membrane fuel cell (PEMFC) in a fork-lift truck power system[J]. Journal of Green Energy, 2013, 10(5): 523-543. [10] 游志宇, 陈维荣, 戴朝华, 等. 燃料电池备用电源系统设计与控制研究[J]. 电力自动化设备, 2014, 34(3): 167-173. You Zhiyu, Chen Weirong, Dai Chaohua, et al. Design and control of fuel cell backup power system[J]. Electric Power Automation Equipment, 2014, 34(3): 167-173. [11] 曹长松. 燃料电池在通信电源中的应用[J]. 通信电源技术, 2012, 29(1): 53-57. Cao Changsong. Fuel cell applications in the communication power supply[J]. Telecom Power Technology, 2012, 29(1): 53-57. [12] 陈维荣, 钱清泉, 李奇. 燃料电池混合动力列车的研究现状与发展趋势[J]. 西南交通大学学报, 2009(1): 1-6. Chen Weirong, Qian Qingquan, Li Qi. Investigation status and development trend of hybrid power train based on fuel cell[J]. Journal of Southwest Jiaotong University, 2009(1): 1-6. [13] 张颖颖, 曹广益, 朱新坚. 燃料电池——有前途的分布式发电技术[J]. 电网技术, 2005, 29(2): 57-61. Zhang Yingying, Cao Guangyi, Zhu Xinjian. Fuel cell—a promising distributed generation technique[J]. Power System Technology, 2005, 29(2): 57-61. [14] 杨涛, 史鹏飞. 新型自增湿燃料电池组性能研究[J]. 电源技术, 2008, 32(2): 80-83. Yang Tao, Shi Pengfei. Study on performance of novel self-humidified fuel cell[J]. Chinese Journal of Power Sources, 2008, 32(2): 80-83. [15] 周靖, 张晓维, 谈金祝, 等. 操作参数对PEMFC性能的影响[J]. 南京工业大学学报(自然科学版), 2013, 35(4): 78-81. Zhou Jing, Zhang Xiaowei, Tan Jinzhu, et al. Effects of operating parameters on performance of PEMFC[J]. Journal of Nanjing University of Technology (Natural Science Edition), 2013, 35(4): 78-81. [16] Coppo M, Siegel N P, Von Spakovsky M R. On the influence of temperature on PEM fuel cell operation[J]. Journal of Power Sources, 2006, 159(1): 560-569. [17] Santa Rosa D T, Pinto D G, Silva V S, et al. High performance PEMFC stack with open-cathode at ambient pressure and temperature conditions[J]. Journal of Hydrogen Energy, 2007, 32(17): 4350- 4357. [18] 张传升, 陈凤祥, 高昆鹏, 等. 1kW自呼吸PEMFC堆控制因素试验[J]. 同济大学学报(自然科学版), 2011, 39(6): 890-894. Zhang Chuansheng, Chen Fengxiang, Gao Kunpeng, et al. Experimental study on control factors for a 1kW air-breathing PEMFC stack[J]. Journal of Tongji University (Natural Science), 2011, 39(6): 890-894. [19] Li Q, Chen W, Liu S, et al. Temperature optimization and control of optimal performance for a 300W open cathode proton exchange membrane fuel cell[J]. Procedia Engineering, 2012, 29(1): 179-183. [20] 卫东, 郑东, 褚磊民. 空冷型质子交换膜燃料电池堆最优性能输出控制[J]. 化工学报, 2010, 61(5): 1293-1300. Wei Dong, Zheng Dong, Chu Leimin. Output control of optimal performance for air-cooling PEMFC stack[J]. Journal of Chemical Industry and Engin- eering (China), 2010, 61(5): 1293-1300. [21] Stmicroelectronics. STM32 reference manual: RM0008[M]. STMicroelectronics Group of Com- panies, 2014.