Review on the Methods of Generating High-Repetitive-Frequency High-Voltage Nanosecond Pulses Based on Avalanche Transistors
Zhao Zheng1, Zhong Xu2, Li Zheng1, Gu Yue1, Li Tao1, Li Jiangtao1
1. School of Electrical Engineering Xi’an Jiaotong University Xi’an 710049 China; 2. Tianfu Electric Power Supply Company State Grid Sichuan Electric Power Company Chengdu 610041 China
Abstract:In order to stimulate atmospheric pressure plasma (APP), it is usually demanded that the applied pulses is with kV amplitude, ns rising time and pulse width, and kHz repetitive frequency. Intensively, the pulse front edge and width are always required to be as short as possible. Fortunately, the pulse generating circuit based on avalanche transistor is much suitable for these parameter requirements. This paper summarized the pulse generating methods using avalanche transistors. Firstly, the basic principle and research status of the avalanche transistor were introduced. And then the research status and performance characteristics of the four typical avalanche transistor-based circuits were detailed, including the series-transistor circuit, Marx circuit, parallel-transistor circuit and pulse cut-off circuit. Thereafter, the key factors influencing output pulse parameters were theoretically analyzed, such as pulse amplitude, rising time, fall time, pulse width, repetitive frequency, efficiency and stability. At last, the research status and basic theory of three combined avalanche transistor-based circuits were presented, including the series-transistor Marx circuit, parallel-transistor Marx circuit and parallel Marx circuit.
赵政, 钟旭, 李征, 顾悦, 李涛, 李江涛. 基于雪崩三极管的高重频高压纳秒脉冲产生方法综述[J]. 电工技术学报, 2017, 32(8): 33-47.
Zhao Zheng, Zhong Xu, Li Zheng, Gu Yue, Li Tao, Li Jiangtao. Review on the Methods of Generating High-Repetitive-Frequency High-Voltage Nanosecond Pulses Based on Avalanche Transistors. Transactions of China Electrotechnical Society, 2017, 32(8): 33-47.
[1] 高远, 张帅, 刘峰, 等. 脉冲介质阻挡放电等离子体催化CH 4 直接转化[J]. 电工技术学报, 2017, 32(2): 61-69. Gao Yuan, Zhang Shuai, Liu Feng, et al. Plasma enhanced CH 4 direct conversion in pulsed dielectric barrier discharges[J]. Transactions of China Electro- technical Society, 2017, 32(2): 61-69. [2] 郑培超, 王金梅, 胡章芳, 等. 大气压微等离子体射流对聚酰亚胺薄膜的表面改性[J]. 高电压技术, 2010, 36(6): 1542-1546. Zheng Peichao, Wang Jinmei, Hu Zhangfang, et al. Surface modif ication of polyimide film with at mospheric pressure microplasma jet[J]. High Voltage Engineering, 2010, 36(6): 1542-1546. [3] Ni T L, Ding F, Zhu X D, et al. Cold microplasma plume produced by a compact and flexible generator at atmospheric pressure[J]. Applied Physics Letters, 2008, 92(24): 241503. [4] Shimizu K, Sugiyama T, Nishamani M L S, et al. Application of microplasma for NO x removal[J]. IEEE Transactions on Industry Applications, 2009, 45(4): 1506-1512. [5] Shimizu K, Sugiyama T, Nishamani M L S, et al. Application of micro discharge for air purification[J]. IEEJ Transactions on Power and Energy, 2007, 127(12): 1269-1274. [6] Shimizu K, Sugiyama T, Samaratunge M N L. Study of air pollution control by using micro plasma filter[J]. IEEE Transactions on Industry Applications, 2008, 44(2): 506-511. [7] 周亦骁, 方志, 邵涛. Ar/O 2 和Ar/H 2 O中大气压等离子体射流放电特性的比较[J]. 电工技术学报, 2014, 29(11): 229-238. Zhou Yixiao, Fang Zhi, Shao Tao. Comparison of discharge characteristics of atmospheric pressure plasma jet in Ar/O 2 and Ar/H 2 O mixtures[J]. Transactions of China Electrotechnical Society, 2014, 29(11): 229-238. [8] Walsh J L, Iza F, Janson N B, et al. Three distinct modes in a cold atmospheric pressure plasma jet[J]. Journal of Physics D: Applied Physics, 2010, 43(7): 075201. [9] 丁正方, 方志, 许靖. 四氟化碳含量对大气压Ar等离子体射流放电特性的影响[J]. 电工技术学报, 2014, 31(7): 159-165. Ding Zhengfang, Fang Zhi, Xu Jing. Influences of CF 4 content on discharge characteristics of argon plasma jet under atmospheric pressure[J]. Transa- ctions of China Electrotechnical Society, 2014, 31(7): 159-165. [10] Sousa J S, Niemi K, Cox L J, et al. Cold atmospheric pressure plasma jets as sources of singlet delta oxygen for biomedical applications[J]. Journal of Applied Physics, 2011, 109(12): 123302. [11] Waskoenig J, Niemi K, Knake N, et al. Atomic oxygen formation in a radio-frequency driven micro atmospheric pressure plasma jet[J]. Plasma Sources Science and Technology, 2010, 19(4): 045018. [12] Hofmann S, van Gessel A F H, Verreycken T, et al. Power dissipation, gas temperatures and electron densities of cold atmospheric pressure helium and argon RF plasma jets[J]. Plasma Sources Science and Technology, 2011, 20(6): 065010. [13] Wagenaars E, Gans T, Connell D O, et al. Two-photon absorption laser-induced fluorescence measurements of atomic nitrogen in a radio-frequency atmospheric- pressure plasma jet[J]. Plasma Sources Science and Technology, 2012, 21(4): 042002. [14] Tendero C, Tixier C, Tristant P, et al. Atmospheric pressure plasmas: a review[J]. Spectrochimica Acta Part B-Atomic Spectroscopy, 2006, 61(1): 2-30. [15] Bardos L, Barankova H. Cold atmospheric plasma: sources, processes, and applications[J]. Thin Solid Films, 2010, 518(23): 6705-6713. [16] Zhang C, Shao T, Wang R, et al. A comparison between characteristics of atmospheric-pressure plasma jets sustained by nanosecond and microsecond- pulse generators in helium[J]. Physics of Plasmas, 2014, 21(10): 103505. [17] Reuter S, Winter J, Schmidt-Bleker A, et al. Controlling the ambient air affected reactive species composition in the effluent of an argon plasma jet[J]. IEEE Transactions on Plasma Science, 2012, 40(11): 2788-2794. [18] Boeuf J P, Yang L L, Pitchford L C. Dynamics of a guided streamer (‘plasma bullet’) in a helium jet in air at atmospheric pressure[J]. Journal of Physics D: Applied Physics, 2013, 46(1): 015201. [19] Chang C, Liu G Z, Fang J Y, et al. Field distribution, HPM multipactor, and plasma discharge on the periodic triangular surface[J]. Laser and Particle Beams, 2010, 28(1): 185-193. [20] 姜慧, 邵涛, 章程, 等. 不同电极间距下纳秒脉冲表面介质阻挡放电分布特性[J]. 电工技术学报, 2017, 32(2): 33-42. Jiang Hui, Shao Tao, Zhang Cheng, et al. Distribution characteristics of nanosecond-pulsed surface dielectric barrier discharge at different electrode gaps[J]. Transactions of China Electrotechnical Society, 2017, 32(2): 33-42. [21] Shao T, Zhang C, Jiang H, et al. Nanosecond repetitively pulsed discharge of point-plane gaps in air at atmospheric pressure[J]. IEEE Transactions on Plasma Science, 2011, 39(9): 1881-1888. [22] Yang D, Wang W, Jia L, et al. Production of atmospheric pressure diffuse nanosecond pulsed dielectric barrier discharge using the array needles- plate electrode in air[J]. Journal of Applied Physics, 2011, 109(7): 073308. [23] 董守龙, 姚陈果, 杨楠, 等. 基于Marx电路的全固态纳秒脉冲等离子体射流装置的研制[J]. 电工技术学报, 2016, 31(24): 35-44. Dong Shoulong, Yao Chenguo, Yang Nan, et al. The development of solid-state nanosecond pulsed plasma jet apparatus based on Marx structure[J]. Transa- ctions of China Electrotechnical Society, 2016, 31(24): 35-44. [24] 郑超. 低温等离子体和脉冲电场灭菌技术[D]. 杭州: 浙江大学, 2013. [25] 郑超, 徐羽贞, 黄逸凡, 等. 脉冲等离子体射流杀灭表面和水中的细菌[J]. 浙江大学学报(工学版), 2014, 48(7): 1329-1335. Zheng Chao, Xu Yuzhen, Huang Yifan, et al. Surface and water disinfection by pulsed plasma jet[J]. Journal of Zhejiang University (Engineering Science), 2014, 48(7): 1329-1335. [26] Jiang C, Lane J, Song S T, et al. Single-electrode He microplasma jets driven by nanosecond voltage pulses[J]. Journal of Applied Physics, 2016, 119(8): 083301. [27] Heeren T, Ueno T, Douyan W, et al. Novel dual Marx generator for microplasma applications[J]. IEEE Transactions on Plasma Science, 2005, 33(4): 1205- 1209. [28] Ueno T, Sakugawa T, Akiyama M, et al. Portable Marx generator for microplasma applications[J]. Journal of Plasma and Fusion Research SERIES, 2009, 8: 1339-1343. [29] Shao T, Long K, Zhang C, et al. Experimental study on repetitive unipolar nanosecond-pulse dielectric barrier discharge in air at atmospheric pressure[J]. Journal of Physics D: Applied Physics, 2008, 41(21): 2801-2809. [30] Shao T, Yu Y, Zhang C, et al. Excitation of atmospheric pressure uniform dielectric barrier discharge using repetitive unipolar nanosecond-pulse generator[J]. IEEE Transactions on Dielectrics & Electrical Insulation, 2011, 17(6): 1830-1837. [31] Walsh J L, Liu D X, Iza F, et al. Contrasting characteristics of sub-microsecond pulsed atmospheric air and atmospheric pressure helium-oxygen glow discharges[J]. Journal of Physics D: Applied Physics, 2010, 43(3): 032001. [32] Walsh J L, Iza F, Kong M G. Characterisation of a 3 nanosecond pulsed atmospheric pressure argon microplasma[J]. The European Physical Journal D, 2010, 60(3): 523-530. [33] Walsh J L, Kong M G. Portable nanosecond pulsed air plasma jet[J]. Applied Physics Letters, 2011, 99(8): 081501. [34] Pai D Z, Lacoste D A, Laux C O. Nanosecond repetitively pulsed discharges in air at atmospheric pressure-the spark regime[J]. Plasma Sources Science & Technology, 2010, 19(6): 065015. [35] Müller S, Luggenhölscher D, Czarnetzki U. Ignition of a nanosecond-pulsed near atmospheric pressure discharge in a narrow gap[J]. Journal of Physics D: Applied Physics, 2011, 44(16): 165202. [36] Li J T, Zhong X, Cao H, et al. Development of a stereo-symmetrical nanosecond pulsed power generator composed of modularized avalanche transistor Marx circuits[J]. Review of Scientific Instruments, 2015, 86(9): 093502. [37] Hamilton D, Gibbons J, Shockley W. Physical principles of avalanche transistor pulse circuits[J]. Proceedings of the IRE, 1959, 47(6): 1102-1108. [38] Henebry W M. Avalanche transistor circuits[J]. Review of Scientific Instruments, 1961, 32(11): 1198-1203. [39] Huang J S. Study of transistor switching circuit stability in the avalanche region[J]. IEEE Journal of Solid-State Circuits, 1967, 2(1): 10-21. [40] Spirito P, Vitale G F. An analysis of the dynamic behavior of switching circuits using avalanche transistors[J]. IEEE Journal of Solid-State Circuits, 1972, 7(4): 315-320. [41] Herden W B. Application of avalanche transistors to circuits with a long mean time to failure[J]. IEEE Transactions on Instrumentation and Measurement, 1976, IM-25(2): 152-160. [42] Jethwa J, Marinero E E, Müller A. Nanosecond risetime avalanche transistor circuit for triggering a nitrogen laser[J]. Review of Scientific Instruments, 1981, 52(7): 989-991. [43] 张舒仁. 雪崩晶体管高速脉冲电路设计及其应用[J]. 长春光学精密机械学院学报, 1985(1): 25-35. Zhang Shuren. The design and application of the avalanche transistor high speed pulse circuit[J]. Journal of Changchun Institute of Optics and Fine Mechanics, 1985(1): 25-35. [44] Brown D, Martin D. Subnanosecond high-voltage pulse generator[J]. Review of Scientific Instruments, 1987, 58(8): 1523-1529. [45] Oak S M, Bindra K S, Narayan B S, et al. A fast cavity dumper for a picosecond glass laser[J]. Review of Scientific Instruments, 1991, 62(2): 308-312. [46] Rai V, Shukla M, Khardekar R. A transistorized Marx bank circuit providing sub-nanosecond high-voltage pulses[J]. Measurement Science and Technology, 1994, 5(4): 447-449. [47] Rai V N, Shukla M. A high-voltage pulser circuit with subnanosecond rise time[J]. Review of Scientific Instruments, 1994, 65(6): 2134-2136. [48] Chatterjee A, Mallik K, Oak S M. The principle of operation of the avalanche transistor-based Marx bank circuit: a new perspective[J]. Review of Scientific Instruments, 1998, 69(5): 2166-2170. [49] Liu Jinyuan, Shan Bing, Chang Zenghu. High voltage fast ramp pulse generation using avalanche transistor[J]. Review of Scientific Instruments, 1998, 69(8): 3066-3067. [50] Mallik K. The theory of operation of transistorized Marx bank circuits[J]. Review of Scientific Instruments, 1999, 70(4): 2155-2160. [51] 李太全. 探地雷达天线系统的设计、实现与优化[D]. 武汉: 武汉大学, 2004. [52] 梁步阁, 朱畅, 张光甫, 等. 高功率全固态微波纳秒级脉冲源的设计与应用[J]. 国防科技大学学报, 2004, 26(6): 41-46. Liang Buge, Zhu Chang, Zhang Guangpu, et al. The desighn of high-power nanosecond pulaer based on microwave PCB and its application[J]. Journal of National University of Defense Technology, 2004, 26(6): 41-46. [53] 樊孝明, 郑继禹, 林基明. 基于RF-BJT的超宽带极窄脉冲发生器的设计[J]. 电讯技术, 2005, 45(5): 61-64. Fan Xiaoming, Zheng Jiyu, Lin Jiming. Design of a UWB pulser based on RF-BJT[J]. Telecommuni- cation Engineering, 2005, 45(5): 61-64. [54] Bishop A I, Barker P F. Subnanosecond Pockels cell switching using avalanche transistors[J]. Review of Scientific Instruments, 2006, 77(4): 044701. [55] 樊孝明, 林基明, 郑继禹, 等. 超宽带极窄脉冲设计与产生[J]. 现代雷达, 2006, 28(3): 87-90. Fan Xiaoming, Lin Jiming, Zheng Jiyu, et al. Design and generation of UWB pulse[J]. Modern Radar, 2006, 28(3): 87-90. [56] 杨瑜. 无载波脉冲探地雷达发射机技术研究[D]. 北京: 中国科学院研究生院, 2007. [57] 袁雪林, 朱四桃, 樊亚军. 基于雪崩三极管的全固态脉冲源稳定度研究[C]//西安: 2009年全国微波毫米波会议论文集(下册), 2009: 1109-1112. Yuan Xuelin, Zhu Sitao, Fan Yajun. Research on stability of pulser based on avalanche transistor[C]// Proceedings of the 2009 National Conference on Micro and Millimeter waves (the second volume), Xi’an, 2009: 1109-1112. [58] Yuan Xuelin, Zhang Hongde, Bai Yang, et al. 4kV/30kHz short pulse generator based on time- domain power combining[C]//IEEE International Con- ference on Ultra-Wideband (ICUWB), Nanjing, 2010: 1-4. [59] 袁雪林, 丁臻捷, 俞建国, 等. 基于雪崩管Marx电路的高稳定度脉冲技术[J]. 强激光与粒子束, 2010, 22(4): 757-760. Yuan Xuelin, Ding Zhenjie, Yu Jianguo, et al. Research on high-stability pulser based on avalanche transistor Marx circuit[J]. High Power Laser and Particle Beams, 2010, 22(4): 757-760. [60] 贾海亮, 刘四新, 贾晓斌. 无载波脉冲探地雷达窄脉冲发生器的设计[J]. 微计算机信息, 2011, 27(1): 113-114. Jia Hailiang, Liu Sixin, Jia Xiaobin. The design of narrow pulse generator for impulse ground penetrating radar[J]. Microcomputer Information, 2011, 27(1): 113-114. [61] 王莹. 瞬态电磁脉冲传输特性与雪崩晶体管MARX信号源的研究[D]. 北京: 北京化工大学, 2012. [62] Ding W D, Wang Y N, Fan C, et al. A subnanosecond jitter trigger generator utilizing trigatron switch and avalanche transistor circuit[J]. IEEE Transactions on Plasma Science, 2015, 43(4): 1054-1062. [63] Li J T, Zhong X, Li J H, et al. Theoretical analysis and experimental study on an avalanche transistor- based Marx generator[J]. IEEE Transactions on Plasma Science, 2015, 43(10): 3399-3405. [64] Tan J, Zhong Z, Liu Y, et al. Research on high-repetition high-voltage nanosecond rectangular pulse generator based on avalanche transistor[C]//7th Asia-Pacific Conference on Environmental Electro- magnetics (CEEM), Hangzhou, 2015: 73-76. [65] Oldham W G, Samuelson R R, Antognetti P. Triggering phenomena in avalanche diodes[J]. IEEE Transactions on Electron Devices, 1972, 19(9): 1056- 1060. [66] Krishna S, Hower P. Second breakdown of transistors during inductive turnoff[J]. Proceedings of the IEEE, 1973, 61(3): 393-395. [67] van Bezooijen A, van Straten F, Mahmoudi R, et al. Avalanche breakdown protection by adaptive output power control[C]//IEEE Radio and Wireless Sympo- sium, San Diego, 2006: 519-522. [68] Tamuri A R, Bidin N, Daud Y M. Nanoseconds switching for high voltage circuit using avalanche transistors[J]. Applied Physics Research, 2009, 1(2): 25-29. [69] Krishnaswamy P, Kuthi A, Vernier P T, et al. Compact subnanosecond pulse generator using avalanche transistors for cell electroperturbation studies[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2007, 14(4): 873-877. [70] Inokuchi M, Akiyama M, Sakugawa T, et al. Development of miniature Marx generator using BJT[C]//IEEE Pulsed Power Conference, Washington DC, 2009: 57-60. [71] 时利勇, 刘百玉, 欧阳娴, 等. 一种用于电光开关的高速高压电脉冲的产生[J]. 光子学报, 2006, 35(10): 1501-1504. Shi Liyong, Liu Baiyu, Ouyang Xian, et al. High- speed and high-voltage electrical pulse generation for electro-optical switch[J]. Acta Photonica Sinica, 2006, 35(10): 1501-1504. [72] 范川. 雪崩三极管Marx电路Trigatron气体开关触发技术研究[D]. 西安: 西安交通大学, 2014. [73] 李江涛, 钟旭, 薛静, 等. 全固态模块化MARX电路及脉冲同步叠加设计[J]. 强激光与粒子束, 2015, 27(9): 27095003. Li Jiangtao, Zhong Xu, Xue Jing, et al. Design of all-solid-state modularized Marx circuit and synchronous combining of pulses[J]. High Power Laser and Particle Beams, 2015, 27(9): 27095003. [74] 王帮耀, 刘晓云. 应用于超宽带穿墙雷达的极窄脉冲发生器设计[J]. 现代电子技术, 2008, 31(19): 7-9. Wang Bangyao, Liu Xiaoyun. Design of ultra-narrow pulse generator in ultra-wideband through-wall radar[J]. Modern Electronics Technique, 2008, 31(19): 7-9. [75] Prince P R. Paralleling avalanche transistors[J]. Proceedings of the IEEE, 1965, 53(3): 304-304. [76] Hansen J P, Schmidt W A. A fast risetime avalanche transistor pulse generator for driving injection lasers[J]. Proceedings of the IEEE, 1967, 55(2): 216-217. [77] Vainshtein S, Kostamovaara J, Myllyla R, et al. Switching synchronization of avalanche transistors [high-current pulse generation][C]//IEEE 39th Midwest Symposium on Circuits and Systems, Ames, 1996: 459-462.