Abstract:As with the rotor side converter of doubly fed induction generator (DFIG), considering the problem of large junction temperature fluctuation of IGBT may greatly reduce its reliability under synchronous operation. A control strategy based on the rotor speed control of DFIG was proposed to depress the insulated gate bipolar transistor (IGBT) junction temperature fluctuation. First, a junction temperature calculation model of wind power converter was established, based on the principle of maximum power point tracking (MPPT) control strategy, and combined the DFIG simulation model with the equivalent thermal network of IGBT module. Then, an improved MPPT control strategy with a new power-speed outer control loop of doubly fed induction generator was proposed to solve the problem of large junction temperature fluctuation under synchronous operation condition. Herein, the idea of reducing low frequency operation range of rotor side converter and improving the variation gradient of speed at the operation range near synchronous speed was adopted. Finally, simulation models of a doubly fed wind power generation system were established by combining PLECS and Simulink platform. The electric and thermal performance of rotor side converter were performed under different speed variations between sub-synchronous speed and super-synchronous speed of DFIG. The steady state junction temperature was further analyzed around synchronous speed operation state. Furthermore, an equivalent experiment was established to testify the validity of the junction temperature depression. Simulation and experimental results show that the proposed control strategy can effectively depress the IGBT junction temperature fluctuation of the rotor side converter under synchronous operation condition of DFIG.
李辉, 李洋, 廖兴林, 胡姚刚, 曾正. 基于转速控制的双馈风电机组机侧变流器IGBT器件结温波动抑制策略[J]. 电工技术学报, 2017, 32(12): 97-107.
Li Hui, Li Yang, Liao Xinglin, Hu Yaogang, Zeng Zheng. Insulated Gate Bipolar Transistor Junction Temperature Fluctuation Depression Strategy of Doubly Fed Wind Power Converter Based on Rotor Speed Control. Transactions of China Electrotechnical Society, 2017, 32(12): 97-107.
[1] Chen Zhe, Guerrero J M, Blaabjerg F. A review of the state of the art of power electronics for wind turbines[J]. IEEE Transactions on Power Electronics, 2009, 24(8): 1859-1875. [2] Spinato F, Tavner P J, Van Bussel G J W, et al. Reliability of wind turbine subassemblies[J]. IET Renewable Power Generation, 2009, 3(4): 387-401. [3] 朱晔, 许彬慈, 张安羊, 等. 100kW三电平DC/AC变流器散热器优化设计[C]//中国电源学会第二十届学术年会, 杭州, 2013: 366-371. [4] 孙祖勇, 杨飞, 孙远, 等. 风电变流器散热性能研究[J]. 电力电子技术, 2015, 49(1): 47-49. Sun Zuyong, Yang Fei, Sun Yuan, et al. Study of heat dissipation performance of IGBT module in wind power converter[J]. Power Electronics, 2015, 49(1): 47-49. [5] Breglio G, Lrace A, Napoli E, et al. Experimental detection and numerical validation of different failure mech-anisms in IGBTs during unclamped inductive switching[J]. IEEE Transactions on Electron Devices, 2013, 60(2): 563-570. [6] 梅云辉, 连娇愿, 徐乾烨, 等. 纳米银焊膏双面连接IGBT封装形式的强度[J]. 机械强度, 2014, 36(3): 352-356. Mei Yunhui, Lian Jiaoyuan, Xu Qianye, et al. Strength and reliability of nanosilver peate bonding double-sided packaged IGBT assemblies[J]. Journal of Mechanical Strength, 2014, 36(3): 352-356. [7] 李琦, 徐弘毅, 金锐, 等. 封装键合点对IGBT UIS失效的影响研究[J]. 机电工程, 2015, 32(5): 707- 711. Li Qi, Xu Hongyi, Jin Rui, et al. Influence of bonding location on IGBT's failure under UIS condition[J]. Journal of Mechanical & Electrical Engineering, 2015, 32(5): 707-711. [8] 秦星. 风电变流器IGBT模块结温计算及功率循环能力评估[D]. 重庆: 重庆大学, 2013. [9] Bruns M, Rabelo B, Hofmann W. Investigation of doubly-fed induction generator drives modeling at synchronous operating point in wind turbines[C]// European Conference on Power Electronics and Applications, 2009: 1-10. [10] Huang Hui. 4th flagship semnar in FRENS project[R]. Chongqing, 2012. [11] Lixiang W, McGuire J, Lukaszewski R A. Analysis of PWM frequency control to improve the lifetime of PWM inverter[J]. IEEE Transactions on Industry Applications, 2011, 47(2): 922-929. [12] Musallam M, Acarnley P P, Johnson C M, et al. Power electronic device temperature estimation and control in pulsed power and converter applications[J]. Control Engineering Practive, 2008, 16(12): 1438- 1442. [13] 吴军科, 周雒维, 孙鹏菊, 等. 功率变流器中IGBT模块的结温管理策略研究[C]//第七届中国高校电力电子与电力传动学术年会, 上海, 2013: 793-799. [14] Ma Ke, Blaabjerg F. Modulation methods for neutral-point-clamped wind power converter achieving loss and thermal redistribution under low-voltage ride-through[J]. IEEE Transactions on Industry Elec- tronics, 2014, 61(2): 835-845. [15] 于飞, 张晓峰, 王素华, 等. 空间矢量PWM的比较分析[J]. 武汉理工大学学报: 交通科学与工程版, 2006, 30(1): 52-55. Yu Fei, Zhang Xiaofeng, Wang Suhua, et al. A comparison of space vector PWM[J]. Journal of Wuhan University of Technology: Transportation Science & Engineering, 2006, 30(1): 52-55. [16] 张桂斌, 徐政. 最小开关损耗VSVPWM技术的研究与仿真[J]. 电工技术学报, 2001, 16(2): 34-40. Zhang Guibin, Xu Zheng. Study and simulation of minimum switching losses VSVPWM technique[J]. Transactions of China Electrotechnical Society, 2001, 16(2): 34-40. [17] 安少亮, 孙向东, 陈樱娟, 等. 一种新的不连续PWM统一化实现方法[J]. 中国电机工程学报, 2012, 32(24): 59-66. An Shaoliang, Sun Xiangdong, Chen Yingjuan, et al. A new generalized implementation method of discontinuous PWM[J]. Proceedings of the CSEE, 2012, 32(24): 59-66. [18] Musallam M, Johnson C M. Impact of different control schemes on the life consumption of power electronic modules for variable speed wind turbines[C]// IEEE European Conference on Power Electronics and Applications (EPE), 2011: 1-9. [19] Lixiang W, Kerkman R J, Lukaszewski R A, et al. Analysis of IGBT power cycling capabilities used in doubly fed induction generator wind power system[C]// IEEE Energy Conversion Congress and Exposition (ECCE), 2010: 3076-3083. [20] 贺益康, 胡家兵, 徐烈. 并网双馈异步风力发电机运行控制[M]. 北京: 中国电力出版社, 2011. [21] 李辉, 秦星, 刘盛权, 等. 双馈风电变流器IGBT模块功率循环能力评估[J]. 电力自动化设备, 2015, 35(1): 16-20. Li Hui, Qin Xing, Liu Shengquan, et al. Assessment of power cycling capability for converter IGBT module of DFIG system[J]. Electric Power Auto- mation Equipment, 2015, 35(1): 16-20. [22] 胡建辉, 李锦庚, 邹继斌, 等. 变频器中的IGBT模块损耗计算及散热系统设计[J]. 电工技术学报, 2009, 24(3): 159-163. Hu Jianhui, Li Jingeng, Zou Jibin, et al. Losses calculation of IGBT module and heat dissipation system design of inverters[J]. Tansactions of China Electrotechnical Society, 2009, 24(3): 159-163. [23] 潘武略, 徐政, 张静, 等. 电压源换流器型直流输电换流器损耗分析[J]. 中国电机工程学报, 2008, 28(21): 7-14. Pan Wulüe, Xu Zheng, Zhang Jing, et al. Dissipation analysis of VSC HVDC converter[J]. Proceedings of the CSEE, 2008, 28(21): 7-14. [24] Wei Lixiang, Kerkman R J, Lukaszewski R A, et al. Analysis of IGBT power cycling capabilities used in doubly fed induction generator wind system[J]. IEEE Transaction on Industry Application, 2011, 47(4): 1794-1801. [25] ABB. Application note: applying IGBTs[Z]. 2007. [26] ABB. Application note: thermal design and temper- ature[Z]. 2007. [27] Wyllie P B. Electrothermal modelling for doubly fed induction generator converter reliability in wind power[D]. United Kingdom: Durham University, 2014. [28] Grahame H D, Thomas A L. Pulse width modulation for power converters: principles and practice[M]. New York: IEEE Press, 2010.