Abstract:For the closing RC network, the parameters can't be detected directly and its identification relies on response of port. For the existed equivalent RC network, limited by physical constraints, it is difficult to establish the power source model because stimulate signal on port varies randomly. This paper proposes an parameters identification method relying on the zero-input response. This method analyses the relationship between parameters of RC network and time constant in zero-input response without concerning of stimulate signal and get the conclusion that the parameters cannot be identified in one situation. Then, a method cascading one-order RC network is proposed to get different constraint equations about RC parameters under different RC network. Solving two constraint equations of RC network can identify RC parameters. Simulations and experiments are tested and verified on a two-order Cauer I type network which used to be identified as an example in this paper. The results show that this method can identify RC parameter accurately. Then, applying this method in insulated-gate bipolar transistor (IGBT) module also gets the accurate results.
杜雄, 李腾飞, 夏俊, 刘小翠, 孙鹏菊. 基于零输入响应的Cauer型RC网络参数辨识方法[J]. 电工技术学报, 2017, 32(1): 222-230.
Du Xiong,Li Tengfei,Xia Jun,Liu Xiaocui,Sun Pengju. Identification Method for Cauer Type RC Network Parameter Based on the Zero-Input Response. Transactions of China Electrotechnical Society, 2017, 32(1): 222-230.
[1] 吴宁.电网络[M].北京:科学出版社,2003. [2] Jeongwook K,Noebauer G.Generation of the electrothermal Cauer RC model using a recursive method[C]//Proceeding of the 31st European Solid-State Device Research Conference,2001:495-498. [3] Malherbe J A G.Pseudo-elliptic bandstop filter with 1:2:3 harmonic ratio stubs[J].Electronics Letters,2013,49(2):130-132. [4] Smith M C.Synthesis of mechanical networks:the inerter[J].IEEE Transactions on Automatic Control,2002,47(10):1648-1662. [5] 王锴.无源网络综合中的双二次函数实现[D].南京:南京理工大学,2013. [6] Lutz J,Schlangenotto H,Scheuermann U,et al.Semiconductor power devices[M].New York:IEEE Press,2011:360-368. [7] Faranda R.A new parameters identification procedure for simplified double layer capacitor two-branch model[J].Electric Power Systems Research,2010,80(4):363-371. [8] 张莉,吴延平,李琛,等.基于超级电容器储能系统的均压放电控制策略[J].电工技术学报,2014,29(4):329-333. Zhang Li,Wu Yanping,Li Chen,et al.Control strategy for balanced discharge based on supercapacitor storage system[J].Transactions of China Electrotechnical Society,2014,29(4):329-333. [9] Kuhn E,Forgez C.Modelling Ni-mH battery using Cauer and Foster structures[J].Journal of Power Sources,2006,158(2):1490-1497. [10]赵洋,梁海泉.电化学超级电容器建模研究现状与展望[J].电工技术学报,2012,27(3):188-195. Zhao Yang,Liang Haiquan.Review and expectation of modeling research on electrochemical supercapacitor[J].Transactions of China Electrotechnical Society,2012,27(3):188-195. [11]潘武略,徐政,张静,等.电压源换流器型直流输电换流器损耗分析[J].中国电机工程学报,2008,28(21):7-14. Pan Wulue,Xu Zheng,Zhang Jing,et al.Dissipation analysis of VSC-HVDC converter[J].Proceedings of the CSEE,2008,28(21):7-14. [12]赵洋,韦莉.基于粒子群优化的超级电容器模型结构参数辨识[J].中国电机工程学报,2012,32(15):155-161. Zhao Yang,Wei Li.Structure and parameter identification of supercapacitor based on particle swarm optimization[J].Proceedings of the CSEE,2012,32(15):155-161. [13]Yin Jian,Van Wyk J D,Odendaal W G,et al.Comparison of transient thermal parameters for different die-connecting approaches[J].IEEE Transactions on Industry Applications,2006,42(6):1403-1411. [14]Thermal equivalent circuit models,June.2008[Z].http://www.infineon.com/. [15]Luo Zhaohui,Ahn H,Nokali M A E.A thermal model for insulated gate bipolar transistor module[J].IEEE Transactions on Power Electronics,2004,19(4):902-907. [16]Davidson J N,Stone D A,Foster M P,et al.Improved bandwidth and noise resilience in thermal impedance spectroscopy by mixing PRBS signals[J].IEEE Transactions on Power Electronics,2014,29(9):4817-4828. [17]Fairweather A J,Foster M P,Stone D A.Battery parameter identification with Pseudo Random Binary Sequence excitation (PRBS)[J].Journal of Power Sources,2011,196(22):9398-9406. [18]Ma K,Bahman A S,Beczkowski S,et al.Complete loss and thermal model of power semiconductors including device rating information[J].IEEE Transactions on Power Electronics,2015,30(5):2556-2569. [19]Davidson J N,Stone D A,Foster M P.Required Cauer network order for modelling of thermal transfer impedance[J].Electronics Letters,2014,50(4):260-262. [20]Dougal R A,Gao L,Liu S.Ultracapacitor model with automatic order selection and capacity scaling for dynamic system simulation[J].Journal of Power Sources,2004,126(2):250-257. [21]邱关源.电路[M].北京:高等教育出版社,2009. [22]汪波,罗毅飞,张烁,等.IGBT极限功耗与热失效机理分析[J].电工技术学报,2016,31(12):135-141. Wang Bo,Luo Yifei,Zhang Shuo,et al.Analysis of limiting power dissipation and thermal failure mechanism[J].Transactions of China Electrotechnical Society,2016,31(12):135-141. [23]唐勇,汪波,陈明,等.高温下的IGBT可靠性与在线评估[J].电工技术学报,2014,29(6):17-23. Tang Yong,Wang Bo,Chen Ming,et al.Reliability and on-line evaluation of IGBT modules under high temperature[J].Transactions of China Electrotechnical Society,2014,29(6):17-23. [24]Vass-Varnai A,Gao Shan,Sarkany Z,et al.Issues in junction-to-case thermal characterization of power packages with large surface area[C]//26th Annual IEEE Semiconductor Thermal Measurement and Management Symposium,2010:158-164. [25]Luo Yafei,Kajita Y,Hatakeyama T,et al.Thermal transient test based thermal structure function analysis of IGBT package[C]//2014 International Conference on Electronics Packaging,2014:596-599. [26]JESD 51-14.Transient dual interface test method for the measurement of the thermal resistance junction-to-case of semiconductor devices with heat flow trough a single path[S].2010. [27]Merrikh A A,McNamara A J.Parametric evaluation of foster RC-network for predicting transient evolution of natural convection and radiation around a flat plate[C]//2014 IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems,2014:1011-1018. [28]李庆民,徐国政,钱家骊,等.大功率GTO等效传热模型的研究[J].中国电机工程学报,2000,20(1):21-28. Li Qingmin,Xu Guozheng,Qian Jiali,et al.Investiga-tion on the equivalent heat transfer model of large capacity GTO[J].Proceedings of the CSEE,2000,20(1):21-28.