摘要 当前大功率直流电源普遍采用直流链接技术和无源功率因数校正方案,电网侧电流谐波较大、功率因数较低且尺寸较大。基于高频交流链接(HF AC link)技术的变换器具有优异的电网侧性能,且不需要大容量的直流储能环节和滤波电抗器,尤其是在大功率电源中有利于减小尺寸,结合串联谐振电路,还可以减小损耗,以满足移动平台对高功率密度、高效率的要求。采用状态平面图法分析了在三相激励条件下的串联谐振电路断续模式下的电流特性,并得到了精确的控制参数表达式,对串联谐振电路采用脉冲密度调制(PDM)的方式调节和稳定直流电源的输出。在对单脉冲电流特性分析基础上给出了基于电网相位进行前馈的控制策略,并构建了前馈和反馈控制相结合的控制系统并对其进行仿真和实验。实验结果与仿真结果一致,表明在负载电阻560Ω上产生28.6kW,即4kV的条件下,电压纹波低于1%,输入侧功率因数为1,各相电流总谐波含量低于5.5%。
Abstract:High power DC power supply usually adopts DC-link and passive power factor correction method, resulting in serious line current harmonics and low power factor at grid side. The converter based on high frequency AC-link technology has excellent properties at grid side. In addition, since large capacitors and line filters are no more needed, the size can be reduced for the high power supply, and combined with the traditional series resonant circuit, the switching losses can also be reduced. This article analyzes the characteristics of DCM resonant current excited by the three-phase grid, and provides an accurate theoretical solution for control with state-plane diagram method. The PDM method is used to adjust and stabilize the output voltage. This article provides a feed-forward control strategy based on the current characteristics analysis, and builds a control system combined with the feed-forward and feed-back controls. The simulation and experimental results show that, with the proposed accurate solution and control system, and at the condition of generating 4kV on a 560Ω resistor, the output voltage ripple (p-p) is lower than 1%, meanwhile, at the grid side, the power factor is almost 1 and the total harmonic distortion (THD) of each line current is lower than 5.5%.
李伟, 刘庆想, 张政权, 李相强. 基于高频交流链接技术的大功率高压直流电源[J]. 电工技术学报, 2016, 31(16): 65-71.
Li Wei, Liu Qingxiang, Zhang Zhengquan, Li Xiangqiang. High Power High Voltage DC Power Supply Based on Series-Resonant High Frequency AC Link Technology. Transactions of China Electrotechnical Society, 2016, 31(16): 65-71.
[1] Evans I, Limpaecher R, Dillon A. Powering the way a paper on AC link TM technology for 21st century HVDC transmission[C]//IEEE Energy 2030 Con- ference, Atlanta, GA, 2008: 1-11. [2] 叶汉民. 一种高稳定度70kV直流高压电源装置[J]. 高电压技术, 2000, 26(6): 40-42. Ye Hanmin. A 70kV high voltage source device with high stability[J]. High Voltage Engineering, 2000, 26(6): 40-42. [3] Sun J, Ding X, Nakaoka M, et al. Series resonant ZCS-PFM DC-DC converter with multistage rectified voltage multiplier and dual-mode PFM control scheme for medical-use high-voltage X-ray power generator[J]. Electric Power Applications, 2000, 147(6): 527-534. [4] 刘军, 官威, 石健将. 高压静电除尘用电源调压特性的分析[J]. 高电压技术, 2009, 35(2): 344-349. Liu Jun, Guan Wei, Shi Jianjiang. Voltage regulation characteristics analysis of power supply for high voltage electrostatic precipitators[J]. High Voltage Engineering, 2009, 35(2): 344-349. [5] Bee G L, Simpson L, Tydeman A. A precision 75kW, 25kV, power system for a klystron amplifier[C]//34h IEEE International Conference on Plasma Science, Albuquerque, NM, 2007, 2: 1488-1491. [6] Cook D J, Catucci M, Wheeler P W. Development of a predictive controller for use on a direct converter for high-energy physics applications[J]. IEEE Transa- ctions on Industrial Electronics, 2008, 55(12): 4325- 4334. [7] Cook D J, Clare J C, Wheeler P W. A direct converter for high-energy physics applications[J]. IEEE Transa- ctions on Plasma Science, 2009, 37(4): 593-602. [8] 徐伟东, 陈文光, 宣伟民. 基于PSM技术的70kV/ 90A高压脉冲电源的研制[J]. 电工技术学报, 2011, 26(12): 129-135. Xu Weidong, Chen Wenguang, Xuan Weimin. Development of the 70kV/90A high-voltage pulse power supply based on PSM technology[J]. Tansa- ctions of China Electrotechnical Society, 2011, 26(12): 129-135. [9] 夏长亮,阎彦. 矩阵变换器-永磁同步电机系统[J]. 电工技术学报, 2015, 30(23): 1-9. Xia Changliang, Yan Yan. Matrix converter- permanent magnet synchronous motor drives[J]. Tansactions of China Electrotechnical Society, 2015, 30(23): 1-9. [10] Klaassens J B, Smits E J F M. Series-resonant AC-power interface with an optimal power factor and enhanced conversion ratio[J]. IEEE Transactions on Power Electronics, 1988, 3(3): 335-343. [11] Balakrishnan A, Toliyat H A, Alexander W C. Soft switched AC link Buck Boost converter[C]//IEEE Applied Power Electronics Conference and Exposi- tion (APEC), Austin, TX, 2008: 1334-1339. [12] 蔡家利. 三相-单相矩阵变换器应用于串联谐振感应加热的研究[D]. 杭州: 浙江大学, 2007. [13] 张政权, 刘庆想, 吴志鹏. 基于高频交流链接技术的串联谐振变换器[J]. 强激光与粒子束, 2011, 23(11): 2915-2918. Zhang Zhengquan, Liu Qingxiang, Wu Zhipeng. Series resonant converter based on HF AC-link technology[J]. High Power Laser and Particle Beams, 2011, 23(11): 2915-2918. [14] 张政权, 刘庆想, 李相强. 基于高频交流链接技术电容充电电源研究[J]. 电力电子技术, 2012, 46(6): 53-55. Zhang Zhengquan, Liu Qingxiang, Li Xiangqiang. High frequency AC-link technology capacitor charging power supply[J]. Power Electronics, 2012, 46(6): 53-55. [15] 张治国, 谢运祥, 袁兆梅. LCC谐振变换器的电路特性分析[J]. 电工技术学报, 2013, 28(4): 50-57. Zhang Zhiguo, Xie Yunxiang, Yuan Zhaomei. Analysis of circuit characteristics of LCC resonant converter[J]. Transactions of China Electrotechnical Society, 2013, 28(4): 50-57. [16] Oruganti R, LEE F C. Resonant power processors, part II-methods of control[J]. IEEE Transactions on Industry Applications, 1985, 21(6): 1461-1471. [17] 陈启超, 王建赜, 纪延超. 双向LLC谐振型直流变压器的软启动及功率换向控制[J]. 电工技术学报, 2014, 29(8): 180-186. Chen Qichao, Wang Jianze, Ji Yanchao. Control scheme of bidirectional LLC resonant DC-DC trans- former for soft start and power conversion[J]. Tansactions of China Electrotechnical Society, 2014, 29(8): 180-186. [18] Lee C Q, Siri K. Analysis and design of series resonant converte by state-plane diagram[J]. IEEE Transactions on Aerospace and Electronic Systems, 1986, 22(6): 757-763. [19] 吕富勇, 李永新, 王芹. 模块化高精度大功率高压电源并联技术[J]. 高电压技术, 2008, 34(3): 587-591. Lü Fuyong, Li Yongxin, Wang Qin. Design of high-precision and large-power high-voltage DC power supply with modules in parallel[J]. High Voltage Engineering, 2008, 34(3): 587-591.