Abstract:In this paper, the magnet skewing structure is adopted to reduce the cogging torque in permanent magnet drive. The analytical method is used to give the expression of the cogging torque. The quadratic polynomials are employed to construct response surface model based on the response obtained by the Ansys software and the central composite design (CCD) experiment method. Based on this model, the minimal cogging torque is taken as the optimal objective, and then the particle swarm optimization (PSO) algorithm is used to perform optimization and obtain the optimal structure parameters of the PMD. At last, the permanent magnet drive with magnet skewing structure is analyzed and optimized with above method. The results verify that the cogging torque can be notably reduced with this optimization method.
[1] Wallace A, Von Jouanne A, Jeffryes R. Comparison testing of an adjustable-speed permanent-magnet eddy- current coupling[C]. IEEE Proceedings of Pulp and Paper Industry Technical Conference, Atlanta, 2000: 73-78. [2] Wallace A, Von Jouanne A. Industrial speed control: are PM couplings an alternative to VFDs?[J]. IEEE Industry Applications Magazine, 2001, 7(5): 57-63. [3] Wallace A, Von Jouanne A, Williamson S, et al. Perfor- mance prediction and test of adjustable, permanent- magnet, load transmission systems[C]. Proceedings of IEEE Industry Applications Society 36th Annual Meeting, 2001: 1648-1655. [4] Salon S J, Yukenmez Ergene L, Wendling P F. 3D transient magnetic modeling of braking torque in a rotating conducting disc[C]. Proceedings of International Electric Machines and Drives Conference-IEMDC, Cambridge, 2001: 188-191. [5] Abbaszadeh K, Rezaee Alam F, Saied S A. Cogging torque optimization in surface-mounted permanent magnet motors by using design of experiment[J]. Energy Conversion and Management, 2011, 52(10): 3075-3082. [6] 杨玉波, 王秀和, 朱常青. 基于分块永磁磁极的永磁电机齿槽转矩消弱方法[J]. 电工技术学报, 2012, 27(3): 74-76. Yang Yubo, Wang Xiuhe, Zhu Changqing. Effect of permanent magnet segmentation on the cogging torque of surface mounted permanent magnet motors[J]. Transactions of China Electrotechnical Society, 2012, 27(3): 74-76. [7] Hwang K Y, Lin Hai, Rhyu S H, et al. A study on the novel coefficient modeling for a skewed permanent magnet and overhang structure for optimal design of brushless DC motor[J]. IEEE Transactions on Magnetics, 2012, 48(5): 1918-1923. [8] 杨玉波, 王秀和, 丁婷婷. 基于单一磁极宽度变化的内置式永磁同步电动机齿槽转矩消弱方法[J]. 电工技术学报, 2009, 24(7): 42-44. Yang Yubo, Wang Xiuhe, Ding Tingting. Different pole-arc width combination for reducing cogging torque of interior-magnet PMSM[J]. Transactions of China Electrotechnical Society, 2009, 24(7): 42-44. [9] 刘婷, 欧阳红林, 黄守道, 等. 基于重复单元消弱永磁电机齿槽转矩方法[J]. 电工技术学报, 2011, 26(12): 43-48. Liu Ting, Ouyang Honglin, Huang Shoudao, et al. Reducing cogging torque in permanent magnet wind power generators based on repeat unit[J]. Transactions of China Electrotechnical Society, 2011, 26(12): 43-48. [10] 周俊杰, 范承志, 叶云岳, 等. 基于斜磁极的盘式永磁电机齿槽转矩消弱方法[J]. 浙江大学学报, 2010, 44(8): 1549-1550. Zhou Junjie, Fan Chengzhi, Ye Yunyue, et al. Method for reducing cogging torque based on magnet skewing in disc-type permanent magnet motors[J]. Journal of Zhejiang University, 2010, 44(8): 1549-1550. [11] 张志红, 何桢, 郭伟. 在响应曲面方法中的三类中心复合设计的比较研究[J]. 沈阳航空工业学院学报, 2007, 24(1): 87-91. Zhang Zhihong, He Zhen, Guo Wei. A comparative study of three central composite designs in response surface methodology[J]. Journal of Shenyang Institute of Aeronautical Engineering, 2007, 24(1): 87-91. [12] 石松宁, 王大志, 时统宇. 基于RSM的永磁驱动器偏心磁极的多目标优化[J]. 仪器仪表学报, 2014, 35(9): 1966-1967. Shi Songning, Wang Dazhi, Shi Tongyu. Multi- objective optimization of eccentric magnet pole for permanent magnet drive based on response surface methodology[J]. Chinese Journal of Scientific Instru- ment, 2014, 35(9): 1966-1967. [13] Vafaeesefat A. Optimization of composite pressure vessels with metal liner by adaptive response surface method[J]. Journal of Mechanical Science and Technology, 2011, 25(11): 2811-2816. [14] Liu W, Liu L, Chung I, et al. Real-time particle swarm optimization based parameter identification applied to permanent magnet synchronous machine[J]. Applied Soft Computing, 2011, 11(2): 2556-2564. [15] Modares H, Alfi A, Fateh M. Parameter identification of chaotic dynamic systems through an improved particle swarm optimization[J]. Expert Systems with Applications, 2010, 37(5): 3714-3720.