Influence Mechanism of Nitrogen Doping Concentration on the Performance of Ammonia Sensor Based on Graphene
Wang Jianyu1, Zheng Qinren2, She Junyi1, Shen Zhiheng1, Xia Linghan1, Zhang Xin3, Chen Yu1, Cheng Yonghong1, Meng Guodong1
1. State Key Laboratory of Electrical Insulation and Power Equipment Xi'an Jiaotong University Xi'an 710049 China; 2. State Grid Chongqing Shibei Electric Power Supply Branch Chongqing Electric Power Company Chongqing 401147 China; 3. Shenzhen Power Supply Company Shenzhen 518000 China
Abstract:Ammonia (NH3), with a hydrogen storage capacity of 17.7%, is considered a promising hydrogen energy carrier under the goal of dual-carbon(carbon neutrality and carbon peaking). However, due to its high volatility and toxicity, the online detection of NH3 is essential for safe ammonia-hydrogen storage and transport. Gas sensors based on gas-sensitive materials are widely used for NH3 detection, but intrinsic graphene exhibits weak physical adsorption to most gases, limiting its sensing performance. Doping, functionalization, and compositing are effective strategies for improving graphene-based gas sensors. However, the effect of different nitrogen doping concentrations on NH3 sensing performance remains underexplored. Firstly, graphene sensors with different nitrogen doping (NG) concentrations were prepared, and their morphology, structure and chemical composition were systematically characterized. The influence of nitrogen doping concentration on the structural properties of graphene was analyzed. Secondly, the gas sensing response of sensors with different doping concentrations was tested, and the influence of doping concentration on sensor performance was analyzed. Finally, the energy and structural parameters of the nitrogen-doped graphene-NH3 adsorption system were calculated based on the first-principles, and the influence mechanism of doping concentration on gas sensing performance was discussed. The gas sensitivity tests show that the NG30 sensor exhibits optimal performance, with an 11.7% response, a maximum selectivity coefficient of 80, a sensitivity of 0.11%/10-6, a minimum detection limit of 71×10-9, and response/recovery times of 373/568 s. Long-term exposure tests showed that NG sensors maintained over 90% of their initial response even after multiple NH3 exposure cycles, demonstrating excellent stability and repeatability. Computational simulations indicate that when the nitrogen content in graphene is below 1.44%, pyridine nitrogen dominates, resulting in stronger NH3 adsorption with an adsorption energy of -0.26 eV, an adsorption distance of 2.637 Å (1 Å=1×10-10 m), and a charge transfer of 0.04 e (1 e=1.602×10-19 C). This enhanced adsorption improves sensor performance. In contrast, when the nitrogen content exceeds 1.44%, pyrrole nitrogen becomes dominant, leading to weaker adsorption with an adsorption energy of -0.08 eV, an adsorption distance of 3.005 Å, and a charge transfer of 0.02 e, thereby deteriorating sensor performance. Further analysis reveals that nitrogen doping influences graphene's electronic structure, altering its conductivity and adsorption characteristics. Density functional theory (DFT) calculations indicate that pyridine nitrogen contributes to a higher density of states near the Fermi level, facilitating charge transfer during NH3 adsorption. In contrast, pyrrole nitrogen introduces localized states that weaken adsorption interactions. The experimental findings align with theoretical predictions, confirming that optimal NH3 sensing performance is achieved at a nitrogen doping concentration of 1.44%. The following conclusions can be drawn from the analysis: (1) When the doping concentration is low, the doped nitrogen atoms in graphene are mainly pyridine nitrogen. When the doping concentration increases, the relative content of pyrrole nitrogen increases. (2) If the nitrogen doping concentration is too high, the performance of the sensor will deteriorate. (3) Pyridine nitrogen can enhance the adsorption of graphene to NH3, while pyrrole nitrogen will weaken the adsorption. The performance of nitrogen-doped graphene-based NH3 sensor increases with the increase of pyridine nitrogen content, and deteriorates with the increase of pyrrole nitrogen content.
[1] Giddey S, Badwal S P S, Munnings C, et al. Ammonia as a renewable energy transportation media[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(11): 10231-10239. [2] Mukherjee S, Devaguptapu S V, Sviripa A, et al.Low-temperature ammonia decomposition catalysts for hydrogen generation[J]. Applied Catalysis B: Environmental, 2018, 226: 162-181. [3] 吴全, 沈珏新, 余磊, 等.“双碳”背景下氢-氨储运技术与经济性浅析[J]. 油气与新能源, 2022, 34(5): 27-33, 39. Wu Quan, Shen Juexin, Yu Lei, et al.Analysis on the hydrogen-ammonia storage and transportation techno- logy and economical efficiency against the “dual- carbon” background[J]. Petroleum and New Energy, 2022, 34(5): 27-33, 39. [4] Lee I, Jung B, Park J, et al.Mixed potential NH3 sensor with LaCoO3 reference electrode[J]. Sensors and Actuators B: Chemical, 2013, 176: 966-970. [5] 祁福平, 党红娟. 化工企业氨气含量检测方法简评[J]. 中氮肥, 2022(5): 69-72. [6] 傅文翔, 董力强, 杨柳. 光声光谱法检测化学毒剂模拟剂及毒害气体研究进展[J]. 光谱学与光谱分析, 2023, 43(12): 3653-3658. Fu Wenxiang, Dong Liqiang, Yang Liu.Research progress on detection of chemical warfare agent simulants and toxic gases by photoacoustic spectros- copy[J]. Spectroscopy and Spectral Analysis, 2023, 43(12): 3653-3658. [7] 吴军, 田学航. 光声光谱技术与气相色谱技术在变压器在线监测中的分析比较[J]. 电气技术, 2013, 14(12): 65-68. Wu Jun, Tian Xuehang.Analysis and compare of photo-acoustic spect roscopy technology and gas chromatography technology in transformer on-line detecting[J]. Electrical Engineering, 2013, 14(12): 65-68. [8] Ji Xiaobo, Banks C E, Compton R G.The electroche- mical oxidation of ammonia at boron-doped diamond electrodes exhibits analytically useful signals in aqueous solutions[J]. Analyst, 2005, 130(10): 1345-1347. [9] 熊华竞, 苏丹, 王维康. 室内环境甲醛气体检测技术的研究进展[J]. 化学分析计量, 2024, 33(10): 127-136. Xiong Huajing, Su Dan, Wang Weikang.Research development of formaldehyde gas detection technology in indoor environment[J]. Chemical Analysis and Meterage, 2024, 33(10): 127-136. [10] 江军, 张文乾, 李波, 等. 电力变压器油中溶解气体离群值识别和数据重构[J]. 电工技术学报, 2024, 39(17): 5521-5533. Jiang Jun, Zhang Wenqian, Li Bo, et al.Outlier detection and data reconstruction of dissolved gas in oil for power transformers[J]. Transactions of China Electrotechnical Society, 2024, 39(17): 5521-5533. [11] 向英瀚, 柏博旭, 侯士波, 等. 基于SnS2传感器的H2S和SO2F2气体检测性能研究[J]. 高压电器, 2023, 59(3): 132-139. Xiang Yinghan, Bai Boxu, Hou Shibo, et al.Research on H2S and SO2F2 gas detection performance based on SnS2 sensor[J]. High Voltage Apparatus, 2023, 59(3): 132-139. [12] 杨梦洁, 杨爱军, 叶奕君, 等. 基于气体分析的锂离子电池热失控早期预警研究进展[J]. 电工技术学报, 2023, 38(17): 4507-4538. Yang Mengjie, Yang Aijun, Ye Yijun, et al.Research progress on early warning of thermal runaway of Li-ion batteries based on gas analysis[J]. Transactions of China Electrotechnical Society, 2023, 38(17): 4507-4538. [13] 孟国栋, 李雨珮, 唐佳, 等. 锂离子电池储能电站的热失控状态检测与安全防控技术研究进展[J]. 高电压技术, 2024, 50(7): 3105-3127. Meng Guodong, Li Yupei, Tang Jia, et al.Research progress of thermal runaway detection and safety control technology for lithium-ion battery energy storage power stations[J]. High Voltage Engineering, 2024, 50(7): 3105-3127. [14] 第五华婷, 葛万银, 赵虎, 等. Sn掺杂ZIF-8衍生ZnO纳米材料的制备及其NO2传感性能[J]. 陕西科技大学学报, 2024, 42(5): 126-133. Diwu Huating, Ge Wanyin, Zhao Hu, et al.Prepara- tion of Sn-doped ZIF-8-derived ZnO nanomaterials and their NO2 sensing properties[J]. Journal of Shaanxi University of Science & Technology, 2024, 42(5): 126-133. [15] 吴晓芳, 王晓雨, 黄宝玉, 等. 基于SnO2/SnTe材料的氨气传感器性能[J]. 微纳电子技术, 2023, 60(9): 1445-1456. Wu Xiaofang, Wang Xiaoyu, Huang Baoyu, et al.Performance of ammonia sensor based on SnO2/SnTe material[J]. Micronanoelectronic Technology, 2023, 60(9): 1445-1456. [16] 张冬至, 姜传星, 殷乃良, 等. 纳米修饰石墨烯薄膜传感器的变压器油中乙炔气体敏感特性[J]. 高电压技术, 2017, 43(11): 3712-3717. Zhang Dongzhi, Jiang Chuanxing, Yin Nailiang, et al.Sensing characteristics of acetylene gas in trans- former oil of nano-modified graphene-based film sensor[J]. High Voltage Engineering, 2017, 43(11): 3712-3717. [17] 庞思远, 刘希喆. 石墨烯在电气领域的研究与应用综述[J]. 电工技术学报, 2018, 33(8): 1705-1722. Pang Siyuan, Liu Xizhe.Review on research and application of graphene in electrical field[J]. Trans- actions of China Electrotechnical Society, 2018, 33(8): 1705-1722. [18] 杨丽, 陈雪, 王子涵, 等. 基于激光诱导石墨烯的柔性超疏水温度传感器研究[J]. 电工技术学报, 2023, 38(增刊1): 257-266. Yang Li, Chen Xue, Wang Zihan, et al.Research on flexible and superhydrophobic temperature sensor based on laser-induced graphene[J]. Transactions of China Electrotechnical Society, 2023, 38(S1): 257-266. [19] 高新, 李志慧, 刘宇鹏, 等. 改性石墨烯基传感器对SF6分解组分H2S的吸附机理及检测特性研究[J]. 电工技术学报, 2023, 38(13): 3606-3618. Gao Xin, Li Zhihui, Liu Yupeng, et al.Study on adsorption mechanism and detection characteristics of modified graphene sensors for SF6 decomposed component H2S[J]. Transactions of China Electrotech- nical Society, 2023, 38(13): 3606-3618. [20] Zhang Li, Li Chun, Liu Anran, et al.Electrosynthesis of graphene oxide/polypyrene composite films and their applications for sensing organic vapors[J]. Journal of Materials Chemistry, 2012, 22(17): 8438-8443. [21] Lü Ruitao, Chen Gugang, Li Qing, et al.Ultrasensi- tive gas detection of large-area boron-doped graphene[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(47): 14527-14532. [22] Srivastava S, Kashyap P K, Singh V, et al.Nitrogen doped high quality CVD grown graphene as a fast responding NO2 gas sensor[J]. New Journal of Chemistry, 2018, 42(12): 9550-9556. [23] Kim Y H, Park J S, Choi Y R, et al.Chemically fluorinated graphene oxide for room temperature ammonia detection at ppb levels[J]. Journal of Materials Chemistry A, 2017, 5(36): 19116-19125. [24] 郑钦仁, 詹涪至, 折俊艺, 等. 石墨烯的形貌特征对其场发射性能的影响[J]. 物理学报, 2024, 73(8): 216-225. Zheng Qinren, Zhan Fuzhi, She Junyi, et al.Influence of morphological characteristics of graphene on its field emission properties[J]. Acta Physica Sinica, 2024, 73(8): 216-225. [25] 吴天如. 化学气相沉积法生长高质量石墨烯及其光电性能研究[D]. 南京: 南京航空航天大学, 2012. Wu Tianru.Investigation on fabrication and optoelec- tronic properties of high-quality graphene grown by CVD[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012. [26] Deokar G, Jin Junjie, Schwingenschlögl U, et al.Chemical vapor deposition-grown nitrogen-doped graphene’s synthesis, characterization and applications[J]. NPJ 2D Materials and Applications, 2022, 6: 14. [27] 王琼苑, 褚继峰, 李秋霖, 等. 基于微型气体传感阵列的空气绝缘设备放电故障识别[J]. 电工技术学报, 2023, 38(23): 6494-6502. Wang Qiongyuan, Chu Jifeng, Li Qiulin, et al.Miniature gas-sensing array employed for the discharge fault diagnosis of air-insulated equipment[J]. Trans- actions of China Electrotechnical Society, 2023, 38(23): 6494-6502. [28] Perdew J, Burke K, Ernzerhof M.Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868. [29] Zhang Yonghui, Chen Yabin, Zhou Kaige, et al.Improving gas sensing properties of graphene by introducing dopants and defects: a first-principles study[J]. Nanotechnology, 2009, 20(18): 185504. [30] Wang Xinran, Li Xiaolin, Zhang Li, et al.N-doping of graphene through electrothermal reactions with ammonia[J]. Science, 2009, 324(5928): 768-771. [31] Zhang Chaohua, Fu Lei, Liu Nan, et al.Synthesis of nitrogen-doped graphene using embedded carbon and nitrogen sources[J]. Advanced Materials, 2011, 23(8): 1020-1024. [32] 田甜, 吕敏, 田旸, 等. 石墨烯的生物安全性研究进展[J]. 科学通报, 2014, 59(20): 1927-1936. Tian Tian, Lü Min, Tian Yang, et al.Progress in biological safety of graphene[J]. Chinese Science Bulletin, 2014, 59(20): 1927-1936. [33] 姚雅萱, 任玲玲, 高思田, 等. 石墨烯层数测量方法的研究进展[J]. 化学通报, 2015, 78(2): 100-106. Yao Yaxuan, Ren Lingling, Gao Sitian, et al.Progress in measuremental methods for layer numbers of graphene[J]. Chemistry, 2015, 78(2): 100-106. [34] Lherbier A, Blase X, Niquet Y M, et al.Charge transport in chemically doped 2D graphene[J]. Physical Review Letters, 2008, 101(3): 036808. [35] Sharma A K, Mahajan A.Potential applications of chemiresistive gas sensors[M]//Dhall S. Carbon Nanomaterials and Their Nanocomposite-Based Chemiresistive Gas Sensors. Amsterdam: Elsevier, 2023: 223-245. [36] Wusiman M, Taghipour F.Methods and mechanisms of gas sensor selectivity[J]. Critical Reviews in Solid State and Materials Sciences, 2022, 47(3): 416-435. [37] Tualeka A R.Procedures determination of chemical contaminants limit gas safe working environment (case studies on ammonia)[J]. Indonesian Journal of Occupational Safety and Health, 2013, 1(1): 3800. [38] Baier E J.NIOSH testimony to DOL: Occupational Safety and Health Administration public hearing on an occupational standard for sulfur dioxide[R]. Washington D. C.: the US Department of Labor, 1977. [39] Afshar-Mohajer N, Zuidema C, Sousan Sinan, et al.Evaluation of low-cost electro-chemical sensors for environmental monitoring of ozone, nitrogen dioxide, and carbon monoxide[J]. Journal of Occupational and Environmental Hygiene, 2018, 15(2): 87-98. [40] 住房和城乡建设部, 国家质量监督检验检疫总局. 石油化工可燃气体和有毒气体检测报警设计规范: GB 50493—2009[S]. 北京: 中国计划出版社, 2009. [41] Lee Y, Lee S, Hwang Y, et al.Modulating magnetic characteristics of Pt embedded graphene by gas adsorption (N2, O2, NO2, SO2)[J]. Applied Surface Science, 2014, 289: 445-449. [42] Lu Ganhua, Ocola L E, Chen Junhong.Reduced graphene oxide for room-temperature gas sensors[J]. Nanotechnology, 2009, 20(44): 445502. [43] Hayasaka T, Kubota Y, Liu Yumeng, et al.The influences of temperature, humidity, and O2 on electrical properties of graphene FETs[J]. Sensors and Actuators B: Chemical, 2019, 285: 116-122. [44] Joshi R K, Gomez H, Alvi F, et al.Graphene films and ribbons for sensing of O2, and 100 ppm of CO and NO2 in practical conditions[J]. The Journal of Phy- sical Chemistry C, 2010, 114(14): 6610-6613. [45] 赵珉, 褚卫国, 刘桂英, 等. 石墨烯/铜异质结室温气体传感器性能研究[J]. 传感技术学报, 2021, 34(12): 1615-1621. Zhao Min, Chu Weiguo, Liu Guiying, et al.Study on the performances of graphene/copper heterojunction room temperature gas sensor[J]. Chinese Journal of Sensors and Actuators, 2021, 34(12): 1615-1621. [46] Hoa N D, An S Y, Dung N Q, et al.Synthesis of p-type semiconducting cupric oxide thin films and their application to hydrogen detection[J]. Sensors and Actuators B: Chemical, 2010, 146(1): 239-244. [47] Odebowale A A, Abdulghani A, Berhe A M, et al.Emerging low detection limit of optically activated gas sensors based on 2D and hybrid nanostructures[J]. Nanomaterials, 2024, 14(18): 1521. [48] 漆红兰, 李佳妮, 张成孝. 检出限与灵敏度关系及影响因素的探讨[J]. 大学化学, 2021, 36(9): 219-225. Qi Honglan, Li Jiani, Zhang Chengxiao.Discussion on the relationship and influence factors of the limit of detection and the sensitivity of analytical methods[J]. University Chemistry, 2021, 36(9): 219-225. [49] 刘志华, 刘琭琭, 韩丹. 二维材料Ti3C2Tx MXene对氨气的气敏性能[J]. 微纳电子技术, 2023, 60(1): 70-77. Liu Zhihua, Liu Lulu, Han Dan.Sensing properties of two-dimensional material Ti3C2Tx MXene to ammonia[J]. Micronanoelectronic Technology, 2023, 60(1): 70-77. [50] Liu Lili, Qing Miaoqing, Wang Yibo, et al.Defects in graphene: generation, healing, and their effects on the properties of graphene: a review[J]. Journal of Mate- rials Science & Technology, 2015, 31(6): 599-606. [51] Wu Tianru, Shen Honglie, Sun Lei, et al.Nitrogen and boron doped monolayer graphene by chemical vapor deposition using polystyrene, urea and boric acid[J]. New Journal of Chemistry, 2012, 36(6): 1385-1391.