Closed-Loop Field-Weakening Strategy for Induction Motor Model Predictive Control Based on Generalized Flux Error
Zhang Xu1, Xi Shuhan1, Zhang Yongchang1, Luo Bixiong2, Sun Yanqian2
1. School of Electrical and Electronic Engineering North China Electric Power University Beijing 102206 China; 2. China Power Engineering Consulting Group Co. Ltd Beijing 100015 China
Abstract:Single vector model predictive current control (SV-MPCC) stands out due to its remarkable ability to enhance transient response performance while minimizing computational complexity. Compared with vector control, the control object of SV-MPCC is no longer the fundamental current component but directly generates the inverter switching state concerning the current vector prediction value. Thus, SV-MPCC can only obtain the output fundamental voltage amplitude according to the switching state to construct a voltage closed-loop field-weakening (FW) structure. The actual fundamental voltage as feedback in the FW region is often less than expected, which cannot reflect the actual voltage saturation situation compared to the expected fundamental voltage. However, in the SV-MPCC system, the expected fundamental voltage cannot be directly obtained, causing a dynamic problem with the existing closed-loop FW strategy. For this reason, most SV-MPCC systems rely on open-loop FW strategies based on motor model calculations, often leading to inadequate robustness and reduced modulation ratio control accuracy. This paper introduces a closed-loop FW control method for SV-MPCC systems using generalized flux error. An accurate quantitative relationship is established between generalized flux error and stator voltage requirements by transforming the transient current equation and incorporating the generalized flux vector reference value, initial value, and increments. Subsequently, the generalized flux vector plane is designed to define the maximum range of the generalized flux error vector. When the generalized flux error exceeds the limit range, the excess amount is fed back to the FW controller to generate the FW current component to compensate for the flux current in real time, thereby realizing indirect closed-loop control of the inverter output voltage. This strategy optimizes the utilization of the DC-Link voltage, effectively prevents voltage saturation, and avoids the increase of current tracking error under the SV-MPCC control strategy. Compared with the traditional open-loop FW strategy based on the motor model, the proposed closed-loop FW control strategy is sensitive to the change of inductance parameters, which exhibits high robustness and is independent of the motor parameters. The designed FW controller uses the generalized flux error as the control variable to perform closed-loop FW control, expanding the speed range of the induction motor. Experimental results show that the proposed FW method can improve the acceleration performance and load capacity of the induction motor in the FW region.
张旭, 郗姝涵, 张永昌, 罗必雄, 孙衍谦. 基于广义磁链误差的感应电机模型预测控制闭环弱磁策略[J]. 电工技术学报, 2025, 40(20): 6499-6510.
Zhang Xu, Xi Shuhan, Zhang Yongchang, Luo Bixiong, Sun Yanqian. Closed-Loop Field-Weakening Strategy for Induction Motor Model Predictive Control Based on Generalized Flux Error. Transactions of China Electrotechnical Society, 2025, 40(20): 6499-6510.
[1] 张钦培, 李健, 卢阳, 等. 低载波比牵引系统的感应电机特征根离散化模型研究[J]. 电工技术学报, 2024, 39(2): 434-444, 454. Zhang Qinpei, Li Jian, Lu Yang, et al.Research on discretization model of induction motor for low switching-to-fundamental frequency ratio traction system[J]. Transactions of China Electrotechnical Society, 2024, 39(2): 434-444, 454. [2] 葛健, 包振, 徐伟, 等. 考虑静态端部效应的城轨交通用同心笼次级直线双馈电机矢量控制[J]. 电工技术学报, 2024, 39(24): 7752-7763. Ge Jian, Bao Zhen, Xu Wei, et al.Vector control of nest-loop secondary linear doubly-fed machine considering static end effect adapted to urban transit[J]. Transactions of China Electrotechnical Society, 2024, 39(24): 7752-7763. [3] Rodriguez J, Garcia C, Mora A, et al.Latest advances of model predictive control in electrical drives: part I: basic concepts and advanced strategies[J]. IEEE Transactions on Power Electronics, 2022, 37(4): 3927-3942. [4] Rodriguez J, Garcia C, Mora A, et al.Latest advances of model predictive control in electrical drives: part II: applications and benchmarking with classical control methods[J]. IEEE Transactions on Power Electronics, 2022, 37(5): 5047-5061. [5] Dan Hanbing, Zeng Peng, Xiong Wenjing, et al.Model predictive control-based direct torque control for matrix converter-fed induction motor with reduced torque ripple[J]. CES Transactions on Electrical Machines and Systems, 2021, 5(2): 90-99. [6] 汪逸哲, 黄晟, 廖武, 等. 基于新型虚拟矢量调制方法的IPMSM模型预测电流控制方法[J]. 电工技术学报, 2024, 39(8): 2422-2433. Wang Yizhe, Huang Sheng, Liao Wu, et al.IPMSM model predictive current control method based on a novel virtual vector modulation method[J]. Transa- ctions of China Electrotechnical Society, 2024, 39(8): 2422-2433. [7] 齐昕, 苏涛, 周珂, 等. 交流电机模型预测控制策略发展概述[J]. 中国电机工程学报, 2021, 41(18): 6408-6419. Qi Xin, Su Tao, Zhou Ke, et al.Development of AC motor model predictive control strategy: an over- view[J]. Proceedings of the CSEE, 2021, 41(18): 6408-6419. [8] Yan Liming, Wang Fengxiang, Dou Manfeng, et al.Active disturbance-rejection-based speed control in model predictive control for induction machines[J]. IEEE Transactions on Industrial Electronics, 2020, 67(4): 2574-2584. [9] 史涔溦, 马红如, 陈卓易, 等. 永磁同步电机模糊代价函数预测转矩控制[J]. 电机与控制学报, 2022, 26(1): 1-8. Shi Cenwei, Ma Hongru, Chen Zhuoyi, et al.Fuzzy tuning of weight coefficient in model predictive torque control of PMSM[J]. Electric Machines and Control, 2022, 26(1): 1-8. [10] Tavernini D, Metzler M, Gruber P, et al.Explicit nonlinear model predictive control for electric vehicle traction control[J]. IEEE Transactions on Control Systems Technology, 2019, 27(4): 1438-1451. [11] Fang Xiaochun, Lin Shuai, Wang Xiaofan, et al.Model predictive current control of traction per- manent magnet synchronous motors in six-step operation for railway application[J]. IEEE Transa- ctions on Industrial Electronics, 2022, 69(9): 8751-8759. [12] 颜黎明, 郭鑫, 徐玺声, 等. 基于新型解析权重因子配置的感应电机模型预测转矩控制[J]. 电工技术学报, 2023, 38(20): 5421-5433. Yan Liming, Guo Xin, Xu Xisheng, et al.Model predictive torque control of induction machine drives using novel analytic weighting factor assignment[J]. Transactions of China Electrotechnical Society, 2023, 38(20): 5421-5433. [13] 张永昌, 杨海涛. 感应电机模型预测磁链控制[J]. 中国电机工程学报, 2015, 35(3): 719-726. Zhang Yongchang, Yang Haitao.Model predictive flux control for induction motor drives[J]. Pro- ceedings of the CSEE, 2015, 35(3): 719-726. [14] 史涔溦, 王喆, 陈卓易, 等. 基于简化控制集的双三相永磁同步电机模型预测磁链控制[J]. 电机与控制学报, 2023, 27(3): 1-9. Shi Cenwei, Wang Zhe, Chen Zhuoyi, et al.Model predictive flux control algorithm for dual three-phase permanent magnet synchronous motor with simplified control set[J]. Electric Machines and Control, 2023, 27(3): 1-9. [15] 张庆飞, 赵镜红, 严思念, 等. 船用五相感应电机模型预测电流控制研究[J]. 微特电机, 2023, 51(1): 45-49. Zhang Qingfei, Zhao Jinghong, Yan Sinian, et al.Research on model predictive current control of marine five-phase induction motor[J]. Small & Special Electrical Machines, 2023, 51(1): 45-49. [16] Zhang Yongchang, Huang Lanlan, Xu Donglin, et al.Performance evaluation of two-vector-based model predictive current control of PMSM drives[J]. Chinese Journal of Electrical Engineering, 2018, 4(2): 65-81. [17] Zhang Yongchang, Gao Suyu, Xu Wei.An improved model predictive current control of permanent magnet synchronous motor drives[C]//2016 IEEE Applied Power Electronics Conference and Exposition (APEC), Long Beach, CA, USA, 2016: 2868-2874. [18] Holtz J, Qi Xin.Optimal control of medium-voltage drives: an overview[J]. IEEE Transactions on Indu- strial Electronics, 2013, 60(12): 5472-5481. [19] Li Hongyan, Ma Wenbo, Wang Lei, et al.Weak magnetic control optimization of tram permanent magnet synchronous motor system[C]//2022 IEEE 10th Joint International Information Technology and Artificial Intelligence Conference (ITAIC), Chongqing, China, 2022: 463-468. [20] Habibullah M, Lu D D, Xiao Dan, et al.Predictive torque control of induction motor sensorless drive fed by a 3L-NPC inverter[J]. IEEE Transactions on Industrial Informatics, 2017, 13(1): 60-70. [21] Liu Jinglin, Gong Chao, Han Zexiu, et al.IPMSM model predictive control in flux-weakening operation using an improved algorithm[J]. IEEE Transactions on Industrial Electronics, 2018, 65(12): 9378-9387. [22] 章回炫, 范涛, 宁圃奇, 等. 车用永磁同步电机高性能弱磁控制策略[J]. 电源学报, 2024, 22(2): 378-385. Zhang Huixuan, Fan Tao, Ning Puqi, et al.Flux- weakening control strategy for permanent magnet synchronous motor used in electric vehicles with high performance[J]. Journal of Power Supply, 2024, 22(2): 378-385. [23] Wang Huimin, Wang Tong, Zhang Xuefeng, et al.Voltage feedback based flux-weakening control of IPMSMs with fuzzy-PI controller[J]. International Journal of Applied Electromagnetics and Mechanics, 2020, 62(1): 31-43. [24] Zhang Yongchang, Bai Yuning, Yang Haitao, et al.Low switching frequency model predictive control of three-level inverter-fed IM drives with speed- sensorless and field-weakening operations[J]. IEEE Transactions on Industrial Electronics, 2019, 66(6): 4262-4272. [25] Yang Haitao, Zhang Yongchang, Shen Wenjia.Predictive current control and field-weakening operation of SPMSM drives without motor parameters and DC voltage[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2022, 10(5): 5635-5646. [26] Zhu Yeyuan, Zhang Yongchang, Kang Jian, et al.MotorAST: a low-cost high-performance rapid control prototype platform for electric drives[C]// 2023 IEEE International Conference on Predictive Control of Electrical Drives and Power Electronics (PRECEDE), Wuhan, China, 2023: 1-6. [27] Li Weiwei, Ruan Xinbo, Bao Chenlei, et al.Grid synchronization systems of three-phase grid- connected power converters: a complex-vector-filter perspective[J]. IEEE Transactions on Industrial Electronics, 2014, 61(4): 1855-1870.