A Nonlinear Decoupled Modeling Method of Linear Induction Motor Propulsion System with Segmented Stator
Xu Fei1,2,3, Shi Liming1,2,3, Li Zixin1,2,3, Li Yaohua1,2,3
1. State Key Laboratory of High Density Electromagnetic Power and Systems Institute of Electrical Engineering Chinese Academy of Sciences Beijing 100190 China; 2. University of Chinese Academy of Sciences Beijing 100049 China; 3. Institute of Electrical Engineering and Advanced Electromagnetic Drive Technology QILU ZHONGKE Jinan 250100 China
Abstract:The linear induction motor with a segmented stator (LIM-SS) has great potential for ultra- high-speed electromagnetic propulsion. However, simulating the system’s electromagnetic transient feature in real time poses challenges due to rapid time-varying coupling characteristics between the stator and rotor, zero-crossing thyristor switching current, and varying cable impedance. Mathematical modeling methods for high-speed linear motors mainly include the field-circuit joint operation mathematical model and lumped parameter equivalent circuit mathematical model. While the field-circuit joint operation mathematical model can accurately simulate the system's electromagnetic transient characteristics, it requires extensive computational time and cannot operate in real-time. The lumped parameter equivalent circuit mathematical model is more efficient but struggles to accurately represent the nonlinear characteristics of linear motors. Therefore, this paper proposes a decoupling modeling method for the nonlinear characteristics of the LIM-SS propulsion system. Firstly, this paper analyzes the electromagnetic transient characteristics of the LIM-SS propulsion system under the conditions of the thyristor switching process, rotor entering, and leaving the stator segment. According to the multi-phase motor space vector decoupling modeling method, the system energy conversion characteristics are divided into three parts: effective conversion, invalid conversion, and power supply. The cable voltage drop is moved into the motor leakage inductance part as the stator invalid electromechanical energy conversion part, which effectively avoids the problem of computational divergence caused by the differential term of inductance when calculating the thyristor voltage. Secondly, this paper proposes a virtual rotor flux modeling method for the virtual invalid electromechanical energy conversion part of the linear motor rotor. From the perspective of the rotor, the mutual inductance between the stator and the rotor of the linear induction motor is a constant, which effectively avoids the problem of state equation computational divergence when the coverage ratio is at a continuous non-differentiable point. Finally, a decoupling mathematical model of the LIM-SS propulsion system is proposed based on the multi-phase motor stator space-vector decoupling modeling and virtual rotor flux method. The thyristor’s switching state is judged by the switch command and the current zero crossing point. The stator coverage ratio realizes the mutual decoupling operation of the mathematical model of each stator segment, and the FPGA hardware acceleration realizes the system's small-step real-time calculation. The results of the hardware-in-the-loop test indicate that the traditional mathematical model's numerical calculation diverges as the cable length increases. However, the decoupling modeling method can maintain a constant virtual rotor flux in a steady state, thus avoiding real-time calculation divergence. The simulation results align with the theoretical analysis, achieving a real-time calculation step as low as 500 ns. The steady-state variation between the prototype experimental results and the hardware-in-the-loop simulation results is less than 7%. This difference primarily stems from the dynamic characteristics of the power semiconductor device switching process and the disparity in inductance of each phase from a disconnected structure of linear motor stator. The following conclusions are drawn. (1) The decoupling modeling method equates the cable voltage drop to the electromechanical energy conversion part in the motor. (2) The virtual rotor flux method regards the coupling inductance between the stator and the mover of the linear induction motor as a constant. (3) The constructed mathematical model can realize real-time and accurate characterization of multiple working conditions, such as power supply switching and stator-rotor coupling changes of the stator segmented linear induction motor propulsion system. The results provide a modeling basis for high-performance control of ultra-high-speed linear motor propulsion systems.
徐飞, 史黎明, 李子欣, 李耀华. 定子分段直线感应电机推进系统非线性解耦建模方法[J]. 电工技术学报, 2025, 40(4): 1023-1033.
Xu Fei, Shi Liming, Li Zixin, Li Yaohua. A Nonlinear Decoupled Modeling Method of Linear Induction Motor Propulsion System with Segmented Stator. Transactions of China Electrotechnical Society, 2025, 40(4): 1023-1033.
[1] Ma Weiming, Lu Junyong, Liu Yingquan.Research progress of electromagnetic launch technology[J]. IEEE Transactions on Plasma Science, 2019, 47(5): 2197-2205. [2] 马伟明, 鲁军勇. 电磁发射技术的研究现状与挑战[J]. 电工技术学报, 2023, 38(15): 3943-3959. Ma Weiming, Lu Junyong.Research progress and challenges of electromagnetic launch technology[J]. Transactions of China Electrotechnical Society, 2023, 38(15): 3943-3959. [3] 陈萍, 陈垟, 于明月, 等. 基于OPAL-RT的电机模拟器仿真方法[J]. 电气技术, 2023, 24(4): 15-21. Chen Ping, Chen Yang, Yu Mingyue, et al.Simulation method of motor simulator based on OPAL-RT[J]. Electrical Engineering, 2023, 24(4): 15-21. [4] Mojlish S, Erdogan N, Levine D, et al.Review of hardware platforms for real-time simulation of electric machines[J]. IEEE Transactions on Transportation Electrification, 2017, 3(1): 130-146. [5] 杨雄, 张凤阁, 王秀平. 轨道交通用初级永磁型直线电机电磁特性分析[J]. 电气工程学报, 2018, 13(5): 1-7. Yang Xiong, Zhang Fengge, Wang Xiuping.Electromagnetic characteristics analysis of primary permanent magnet linear motor for rail transit[J]. Journal of Electrical Engineering, 2018, 13(5): 1-7. [6] 李响, 郭鹏涛, 丁远. 基于场路结合的大功率直线超声波电机压电-热-结构多物理场分析[J]. 电工技术学报, 2024, 39(2): 423-433. Li Xiang, Guo Pengtao, Ding Yuan.Piezo-thermalstructure coupling analysis for high-power linear ultrasonic motor based on field-circuit combination method[J]. Transactions of China Electrotechnical Society, 2024, 39(2): 423-433. [7] 周世炯, 李耀华, 史黎明, 等. 分段式双三相永磁直线同步电机的无模型电流预测控制[J]. 电工技术学报, 2024, 39(4): 996-1009, 1021. Zhou Shijiong, Li Yaohua, Shi Liming, et al.Modelfree predictive current control of segmented dual three-phase permanent magnet linear synchronous motor[J]. Transactions of China Electrotechnical Society, 2024, 39(4): 996-1009, 1021. [8] 韩雪岩, 刘景铭, 朱龙飞. 永磁直线电机端部力抑制措施[J]. 电机与控制学报, 2023, 27(8): 54-63. Han Xueyan, Liu Jingming, Zhu Longfei.Measures of reducing detent force and design of linear motor[J]. Electric Machines and Control, 2023, 27(8): 54-63. [9] 聂世雄, 付立军, 许金, 等. 分段供电直线感应电机动子不对称模型及参数计算[J]. 电机与控制学报, 2017, 21(2): 10-17. Nie Shixiong, Fu Lijun, Xu Jin, et al.Asymmetrical model and parameter calculation of segment-powered linear inductive motor mover[J]. Electric Machines and Control, 2017, 21(2): 10-17. [10] 许金, 马伟明, 鲁军勇, 等. 分段供电直线感应电机气隙磁场分布和互感不对称分析[J]. 中国电机工程学报, 2011, 31(15): 61-68. Xu Jin, Ma Weiming, Lu Junyong, et al.Analysis of magnetic field distribution and mutual inductance asymmetry in air gap of linear induction motor with segmented power supply[J]. Proceedings of the CSEE, 2011, 31(15): 61-68. [11] 鲁军勇, 马伟明, 孙兆龙, 等. 多段初级直线感应电机静态纵向边端效应研究[J]. 中国电机工程学报, 2009, 29(33): 95-101. Lu Junyong, Ma Weiming, Sun Zhaolong, et al.Research on static longitudinal end effect of linear induction motor with multi-segment primary[J]. Proceedings of the CSEE, 2009, 29(33): 95-101. [12] 朱俊杰, 吴志程, 许金, 等. 电磁发射直线感应电机多约束改进间接矢量控制策略[J]. 电机与控制学报, 2022, 26(8): 11-20. Zhu Junjie, Wu Zhicheng, Xu Jin, et al.Improved indirect vector control strategy with multi-constraints of linear induction motor for generalized electromagnetic launch[J]. Electric Machines and Control, 2022, 26(8): 11-20. [13] 杨通, 周理兵. 长初级双边直线感应电机纵向动态端部效应第一部分: 气隙磁场[J]. 电机与控制学报, 2014, 18(4): 52-59. Yang Tong, Zhou Libing.Longitudinal dynamic end effect in long primary double-sided linear induction motor part 1: airgap magnetic field[J]. Electric Machines and Control, 2014, 18(4): 52-59. [14] 杨通, 周理兵. 长初级双边直线感应电机纵向动态端部效应第二部分: 性能计算[J]. 电机与控制学报, 2014, 18(8): 67-74. Yang Tong, Zhou Libing.Longitudinal dynamic end effect in long primary double-sided linear induction motor part 2: performance calculation[J]. Electric Machines and Control, 2014, 18(8): 67-74. [15] 鲁军勇, 马伟明, 许金. 高速长定子直线感应电动机的建模与仿真[J]. 中国电机工程学报, 2008, 28(27): 89-94. Lu Junyong, Ma Weiming, Xu Jin.Modeling and simulation of high speed long primary double-sided linear induction motor[J]. Proceedings of the CSEE, 2008, 28(27): 89-94. [16] Sun Xiao, Shi Liming, Zhang Zhihua, et al.Thrust control of a double-sided linear induction motor with segmented power supply[J]. IEEE Transactions on Industrial Electronics, 2019, 66(6): 4891-4900. [17] Guo Keyu, Li Yaohua, Shi Liming, et al.A phasedomain model of dual three-phase segmented powered linear PMSM for hardware-assisted real-time simulation[J]. IEEE Transactions on Industry Applications, 2022, 58(4): 4511-4521. [18] Zhang Mingyuan, Shi Liming.Modeling and cooperative control of segmented long primary doublesided linear induction motor[J]. IEEE Transactions on Industrial Electronics, 2023, 70(2): 1706-1716. [19] 徐飞, 李子欣, 孔甘霖, 等. 变长分段直线感应电机数学建模[J]. 中国电机工程学报, 2024, 44(13): 5338-5348. Xu Fei, Li Zixin, Kong Ganlin, et al.Mathematical model of variable-length segmented linear induction motor[J]. Proceedings of the CSEE, 2024, 44(13): 5338-5348. [20] 张明元, 马伟明, 徐兴华, 等. 一种考虑电流过零的直线电机分段供电策略[J]. 海军工程大学学报, 2019, 31(4): 11-16. Zhang Mingyuan, Ma Weiming, Xu Xinghua, et al.A block feeding strategy for linear motor considering switching at current-crossing point[J]. Journal of Naval University of Engineering, 2019, 31(4): 11-16. [21] 鲁军勇, 马伟明, 李郎如, 等. 高速长初级直线感应电动机纵向边端效应研究[J]. 中国电机工程学报, 2008, 28(30): 73-78. Lu Junyong, Ma Weiming, Li Langru, et al.Research on longitudinal end effect of high speed long primary double-sided linear induction motor[J]. Proceedings of the CSEE, 2008, 28(30), 73-78. [22] Wang Ke, Li Yaohua, Ge Qiongxuan, et al.An improved indirect field-oriented control scheme for linear induction motor traction drives[J]. IEEE Transactions on Industrial Electronics, 2018, 65(12): 9928-9937. [23] 李子润, 徐晋, 汪可友, 等. 电力电子换流器离散小步合成实时仿真模型[J]. 电工技术学报, 2022, 37(20): 5267-5277. Li Zirun, Xu Jin, Wang Keyou, et al.A discrete small-step synthesis real-time simulation model for power converters[J]. Transactions of China Electrotechnical Society, 2022, 37(20): 5267-5277. [24] 郭希铮, 袁佳琦, 游小杰, 等. 电力电子实时仿真建模的FPGA资源优化方法研究[J]. 电机与控制学报, 2020, 24(7): 12-19. Guo Xizheng, Yuan Jiaqi, You Xiaojie, et al.Research on FPGA optimization approach of power electronics real-time simulation modeling[J]. Electric Machines and Control, 2020, 24(7): 12-19. [25] 王钦盛, 王灿, 潘学伟, 等. 基于FPGA的电力电子恒导纳开关模型修正算法及实时仿真架构[J]. 电力系统自动化, 2024, 48(1): 150-159. Wang Qinsheng, Wang Can, Pan Xuewei, et al.Fixed-admittance switch model correction algorithm and real-time simulation architecture of power electronics based on field programmable gate array[J]. Automation of Electric Power Systems, 2024, 48(1): 150-159. [26] 周斌, 汪光森, 李卫超, 等. 基于FPGA的电力电子系统电磁暂态实时仿真通用解算器[J]. 电工技术学报, 2023, 38(14): 3862-3874. Zhou Bin, Wang Guangsen, Li Weichao, et al.An FPGA-based general solver for electromagnetic transient real-time simulation of power electronic systems[J]. Transactions of China Electrotechnical Society, 2023, 38(14): 3862-3874. [27] 何绍民, 张喆, 卢倚平, 等. 基于计算前沿面的实时仿真数值积分并行构造及其数值模型解耦加速方法[J]. 电工技术学报, 2023, 38(16): 4246-4262. He Shaomin, Zhang Zhe, Lu Yiping, et al.Numerical model decoupling acceleration method with numerical integration parallelism construction based on computation front in real-time simulation[J]. Transactions of China Electrotechnical Society, 2023, 38(16): 4246-4262.