Impact of Dynamic Aggregation of Same Concentrating Solar Power Generators in Parallel Connection on the Oscillation Stability of a CSP Plant
Lai Linchen1, Zhou Qiang2, Du Wenjuan1, Wang Yang1, Wang Haifeng1
1. College of Electrical Engineering Sichuan University Chengdu 610065 China;
2. State Grid Gansu Electric Power Research Institute Lanzhou 730050 China
In this paper, the impact of concentrating solar power (CSP) generators in parallel connection on oscillation stability of a CSP plant is studied. It is found that the increase of the number of CSP generators in parallel connection may cause the oscillation mode associated with the excitation system of CSP generator to move to the right on the complex plane, which brings the risk of instability. Based on the Routh stability criterion, further analysis confirms and explains the mechanism of this discovery. Firstly, the linearized model of CSP generator is presented, and then the linearized model of CSP plant with N CSP generators in parallel connection is established. Then, the equivalent model of CSP plant is derived with similar transformation under the condition that CSP generators are all the same. Then, the risk of oscillation instability caused by the increase of the number of parallel CSP generators is analyzed. An example shows that with the increase of the number of parallel CSP generators, the oscillation mode associated with the excitation system of the CSP plant moves to the right on the complex plane, resulting in the instability of the CSP plant. Then, the applicability of the equivalent model is discussed when the dynamic of the CSP generator is different. Finally, the theoretical analysis shows that the electromechanical oscillation mode of the CSP generator is not affected by the increase of the number of parallel CSP generators, thus proving and explaining the mechanism of the instability of oscillation mode associated with the excitation system.
赖林琛, 周强, 杜文娟, 王杨, 王海风. 同型光热发电机并联聚合对光热发电场振荡稳定性影响[J]. 电工技术学报, 2022, 37(1): 179-191.
Lai Linchen, Zhou Qiang, Du Wenjuan, Wang Yang, Wang Haifeng. Impact of Dynamic Aggregation of Same Concentrating Solar Power Generators in Parallel Connection on the Oscillation Stability of a CSP Plant. Transactions of China Electrotechnical Society, 2022, 37(1): 179-191.
[1] 张悦, 申彦波, 石广玉.面向光热发电的太阳能短期预报技术[J]. 电力系统自动化, 2016, 40(19): 158-167.
Zhang Yue, Shen Yanbo, Shi Guangyu.Short-term forecasting technology of solar energy for concentrating solar power[J]. Automation of Electric Power Systems, 2016, 40(19): 158-167.
[2] Gil A, Medrano M, Martorell I, et al. State of the art on high temperature thermal energy storage for power generation (part1): concepts, materials and modellization[J]. Renewable and Sustainable Energy Reviews, 2010, 14(1): 31-55.
[3] 车泉辉, 娄素华, 吴耀武, 等. 计及条件风险价值的含储热光热电站与风电电力系统经济调度[J]. 电工技术学报, 2019, 34(10): 2047-2055.
Che Quanhui, Lou Suhua, Wu Yaowu, et al. Economic dispatching for power system of concentrated solar power plant with thermal energy storage and wind power considering conditional value-at-risk[J]. Transactions of China Electrotechnical Society, 2019, 34(10): 2047-2055.
[4] International Energy Agency(IEA).Technology roadmap: concentrating solar power[R]. Source OECD Energy, 2010, 7: 48-49.
[5] 邵成成, 冯陈佳, 李丁, 等. 光热发电机群聚合模型及其在电力系统运行模拟中的应用[J]. 中国电机工程学报, 2020, 40(11): 3507-3515.
Shao Chengcheng, Feng Chenjia, Li Ding, et al. Clustered CSP model and its application in power system operation simulation[J]. Proceedings of the CSEE, 2020, 40(11): 3507-3515.
[6] 康义, 周献林, 谢国恩, 等. 用NETOMAC程序进行电力系统动态等值研究[J]. 电网技术, 1998, 22(5): 21-24.
Kang Yi, Zhou Xianlin, Xie Guoen, et al. Using NETOMAC program in system equivalent study[J]. Power System Technology, 1998, 22(5): 21-24.
[7] 倪以信, 陈寿孙, 张宝霖.动态电力系统的理论和分析[M]. 北京: 清华大学出版社, 2002.
[8] 胡杰, 余贻鑫.电力系统动态等值参数聚合的实用方法[J]. 电网技术, 2006, 30(24): 26-30.
Hu Jie, Yu Yixin.A practical method of parameter aggregation for power system dynamic equivalence[J]. Power System Technology, 2006, 30(24): 26-30.
[9] 许继刚, 汪毅.塔式太阳能光热发电站设计关键技术[M]. 北京: 中国电力出版社, 2019.
[10] 朱林, 王贝, 付东, 等. 人工鱼群算法在同调发电机群聚合中的应用[J]. 电力科学与技术学报, 2020, 35(3): 61-67.
Zhu Lin, Wang Bei, Fu Dong, et al. Application of an artificial fish swarm algorithm in the aggregation of coherent generators[J]. Journal of Electric Power Science and Technology, 2020, 35(3): 61-67.
[11] 韩平平, 林子豪, 夏雨, 等. 大型光伏电站等值建模综述[J]. 电力系统及其自动化学报, 2019, 31(4): 39-47.
Han Pingping, Lin Zihao, Xia Yu, et al. Review on equivalent modeling of large-scale photovoltaic power plant[J]. Proceedings of the CSU-EPSA, 2019, 31(4): 39-47.
[12] 苏田宇, 杜文娟, 王海风.多直驱永磁同步发电机并联风电场次同步阻尼控制器降阶设计方法[J]. 电工技术学报, 2019, 34(1): 116-127.
Su Tianyu, Du Wenjuan, Wang Haifeng.A reduced order design method for sub-synchronous damping controller of multi-PMSGs parallel wind farm[J]. Transactions of China Electrotechnical Society, 2019, 34(1): 116-127.
[13] 董文凯, 杜文娟, 王海风.弱连接条件下锁相环动态主导的并网直驱风电场小干扰稳定性研究[J]. 电工技术学报, 2021, 36(3): 609-622.
Dong Wenkai, Du Wenjuan, Wang Haifeng.Small-signal stability of a grid-connected PMSG wind farm dominated by dynamics of PLLs under weak grid connection[J]. Transactions of China Electrotechnical Society, 2021, 36(3): 609-622.
[14] 董文凯, 杜文娟, 王海风.用于风电场小干扰稳定性检验的降阶模式计算方法[J]. 电工技术学报, 2021, 36(7): 1468-1479.
Dong Wenkai, Du Wenjuan, Wang Haifeng.Reduced-order modal computation method for small-signal stability examination of a wind farm[J]. Transactions of China Electrotechnical Society, 2021, 36(7): 1468-1479.
[15] Zhou Y, Zhao L, Lee W J.Robustness analysis of dynamic equivalent model of DFIG wind farm for stability study[J]. IEEE Transactions on Industry Applications, 2018, 54(6): 5682-5690.
[16] Ali M, Ilie I S, Milanović J, et al. Probabilistic clustering of wind generators[C]//Power & Energy Society General Meeting, Minneapolis, MN, USA, 2010: 1-6.
[17] Zou Jianxiao, Peng Chao, Xu Hongbing, et al. A fuzzy clustering algorithm-based dynamic equivalent modeling method for wind farm with DFIG[J]. IEEE Transactions on Energy Conversion, 2015, 30(4): 1329-1337.
[18] 张剑, 何怡刚.基于轨迹灵敏度分析的永磁直驱风电场等值模型参数辨识[J]. 电工技术学报, 2020, 35(15): 3303-3313.
Zhang Jian, He Yigang.Parameters identification of equivalent model of permanent magnet synchronous generator wind farm based on analysis of trajectory sensitivity[J]. Transactions of China Electrotechnical Society, 2020, 35(15): 3303-3313.
[19] 辛焕海, 董炜, 袁小明, 等. 电力电子多馈入电力系统的广义短路比[J]. 中国电机工程学报, 2016, 36(22): 6013-6027.
Xin Huanhai, Dong Wei, Yuan Xiaoming, et al. Generalized short circuit ratio for multi power electronic based devices infeed to power systems[J]. Proceedings of the CSEE, 2016, 36(22): 6013-6027.
[20] 辛焕海, 甘德强, 鞠平.多馈入电力系统广义短路比: 多样化新能源场景[J]. 中国电机工程学报, 2020, 40(17): 5516-5526.
Xin Huanhai, Gan Deqiang, Ju Ping.Generalized short circuit ratio of power systems with multiple power electronic devices: analysis for various renewable power generations[J]. Proceedings of the CSEE, 2020, 40(17): 5516-5526.
[21] Du Wenjuan, Dong Wenkai, Wang Haifeng, et al. Dynamic aggregation of same wind turbine generators in parallel connection for studying oscillation stability of a wind farm[J]. IEEE Transactions on Power Systems, 2019, 34(6): 4694-4705.
[22] Cocco D, Serra F.Performance comparison of two-tank direct and thermocline thermal energy storage systems for 1MWe class concentrating solar power plants[J]. Energy, 2015, 81: 526-536.
[23] 冯陈佳, 邵成成, 王雅楠, 等. 考虑启动热量约束的光热机组优化运行模型[J]. 电力系统自动化, 2019, 43(13): 29-35.
Feng Chenjia, Shao Chengcheng, Wang Yanan, et al. Optimal operation model of concentrating solar power units considering startup heat constraints[J]. Automation of Electric Power Systems, 2019, 43(13): 29-35.
[24] 王佳颖, 史俊祎, 文福拴, 等. 计及需求响应的光热电站热电联供型微网的优化运行[J]. 电力系统自动化, 2019, 43(1): 176-185.
Wang Jiaying, Shi Junyi, Wen Fushuan, et al. Optimal operation of CHP microgrid with concentrating solar power plants considering demand response[J]. Automation of Electric Power Systems, 2019, 43(1): 176-185.
[25] Xu Ti, Zhang Ning.Coordinated operation of concentrated solar power and wind resources for the provision of energy and reserve services[J]. IEEE Transactions on Power Systems, 2017, 32(2): 1260-1271.
[26] Luo Q, Ariyur K B, Mathur A K.Control-oriented concentrated solar power plant model[J]. IEEE Transactions on Control Systems Technology, 2016, 24(2): 623-635.
[27] 关金峰, 李加护.发电厂动力部分[M]. 北京: 中国电力出版社, 2015.
[28] IEEE Subsynchronous Resonance Task Force.First benchmark model for computer simulation of subsynchronous resonance[J]. IEEE Transactions on Power Systems, 1977, 96(5): 1565-1572.