Abstract:The selection of IGBTs is the primary and most important issue in the design stage of power converters, and plays an important role in converter’s efficiency, reliability and cost. However, IGBTs and switching frequency are always chosen approximately and empirically, and there is no clear theoretical basis so far. To solve this problem, a novel optimized design method of EV converters is proposed in this paper. First, three evaluation functions related to energy loss, lifetime and cost are established based on long term driving cycles. Then, the Pareto solution sets of two variables of IGBTs and switching frequency are obtained by the designed multi-objective optimization process. Last, an optimal solution is selected by using hierarchical analysis method and verified by experiments.
罗旭, 王学梅, 吴海平. 基于多目标优化的电动汽车变流器IGBT及开关频率的选择[J]. 电工技术学报, 2020, 35(10): 2181-2193.
Luo Xu, Wang Xuemei, Wu Haiping. Selections of IGBTs and Switching Frequency of the Electric Vehicle Converter Based on Multi-Objective Optimization. Transactions of China Electrotechnical Society, 2020, 35(10): 2181-2193.
[1] Zhou Heliang, Wei Feng, Sun Liqing.Development status of electric vehicles[J]. Journal of Asian Electric Vehicles, 2009, 2(1): 531-534. [2] International energy agency. Global EV outlook2017[DB/OL]. https://webstore.iea.org/global-ev- outlook-2017, 2017-6-6. [3] 刘庆, 刘和平, 刘平, 等. 电动汽车用异步电动机低速转矩最大化[J]. 电工技术学报, 2017, 32(24): 30-41. Liu Qing, Liu Heping, Liu Ping, et al.Torque maximization about electric vehicle induction motor at low speed[J]. Transactions of China Electro- technical Society, 2017, 32(24): 30-41. [4] 王琪, 孙玉坤, 罗印升. 混合动力电动汽车的复合电源功率分配控制策略[J]. 电工技术学报, 2017, 32(18): 143-151. Wang Qi, Sun Yukun, Luo Yinsheng.A power distribution control strategy of hybrid energy storage system in hybrid electric vehicles[J]. Transactions of China Electrotechnical Society, 2017, 32(18): 143-151. [5] 王莉娜, 邓洁, 杨军一, 等. Si和SiC功率器件结温提取技术现状及展望[J]. 电工技术学报, 2019, 34(4): 703-716. Wang Lina, Deng Jie, Yang Junyi, et al.Junction temperature extraction methods for Si and SiC power devices—a review and possible alternatives[J]. Transa- ctions of China Electrotechnical Society, 2019, 34(4): 703-716. [6] Wang Huai, Liserre M, Blaabjerg F, et al.Transi- tioning to physics-of-failure as a reliability driver in power electronics[J]. IEEE Journal of Emerging & Selected Topics in Power Electronics, 2014, 2(1): 97-114. [7] Chen Dezhi, Kwon B, Bai Baodong.Selection of IGBTs for controlling rectifier and inverter based upon a novel analytical approach for loss calculation[C]//International Conference on Power Electronics and ECCE Asia, Seoul, South Korea, 2015: 1109-1115. [8] Song Shoujun, Liu Weiguo, Schaefer U.Detailed power converter design for a 30kW switched reluctance starter/generator used in aircraft[C]// European Conference on Power Electronics and Applications, Barcelona, Spain, 2009: 1-10. [9] Gong Guanghai, Heldwein L, Drofenik U, et al.Comparative evaluation of three-phase high-power- factor AC-DC converter concepts for application in future more electric aircraft[J]. IEEE Transactions on Industrial Electronics, 2005, 52(3): 727-737. [10] Josep B, Alfonso S, Orlandi A, et al.EMI reduction in switched power converters using frequency modulation techniques[J]. Converter Technology & Electric Traction, 2006, 47(3): 569-576. [11] Besnerais J, Lanfranchi V, Hecquet M, et al.Characterization and reduction of audible magnetic noise due to PWM supply in induction machines[J] IEEE Transactions on Industrial Electronics, 2010, 57(4): 1288-1295. [12] Waffler S, Preindl M, Kolar W.Multi-objective optimization and comparative evaluation of Si soft-switched and SiC hard-switched automotive DC-DC converters[C]//Annual Conference of IEEE Industrial Electronics, Porto, Portugal, 2009: 3814-3821. [13] Whaling C L. Electrical and electronics technical team roadmap[DB/OL]. https://www.energy.gov/sites/ prod/files/2014/03/f13/ape032_whaling_2013_o.pdf, 2014-3-13. [14] Biela J, Kolar W, Stupar A, et al.Towards virtual prototyping and comprehensive multi-objective opti- misation in power electronic[C]//Power Conversion and Intelligent Motion Conference Europe (PCIM), Nuremberg, Germany, 2010: 1-23. [15] Ngatchou P, Zarei A, EI-Sharkawi A.Pareto multi- objective optimization[C]//International Conference on Intelligent Systems Application to Power Systems, Arlington, USA, 2005: 6-10. [16] Deb K.Multi-objective optimization[M]. 2nd ed. Berlin: Springer, 2014. [17] Niazi A, Dai S, Balabani S, et al.Product cost estimation: technique classification and methodology review[J]. Journal of Manufacturing Science, 2006, 128(2): 563-575. [18] Adinolfi G, Graditi G, Siano P, et al.Multi-objective optimal design of photovoltaic synchronous boost converters assessing efficiency, reliability, and cost savings[J]. IEEE Transactions on Industrial Infor- mation, 2015, 11(5): 1038-1048. [19] Boillat O, Krismer F, Kolar W.Design space analysis and ρ -η pareto optimization of LC output filters for switch-mode AC power sources[J]. IEEE Transa- ctions on Power Electronics, 2015, 30(12): 6906-6923. [20] Burkart M, Kolar W.Comparative life cycle costs analysis of Si and SiC PV converter systems based on advanced η-ρ-σ multi-objective optimization techni- ques[J]. IEEE Transactions on Power Electronics, 2017, 32(6): 4344-4358. [21] Burkart M, Kolar W.Comparative η-ρ-σ pareto optimization of Si and SiC multi-level dual active bridge topologies with wide input voltage range[J]. IEEE Transactions on Power Electronics, 2017, 32(7): 5258-5270. [22] Schaltz E.Electric vehicles-modelling and simu- lations[M]. Aalborg: Aalborg University, 2011. [23] Shen Yanfeng, Wang Huai, Yang Yongheng, et al.Mission profile-based sizing of IGBT chip area for PV inverter applications[C]//International Sympo- sium on Power Electronics for Distributed Generation Systems, Vancouver, Canada, 2016: 1-8. [24] Wintrich A, Nicolai U, Tursky W, et al.Application manual power semiconductors[M]. Nuremberg: ISLE Verlag, 2011: 100-129. [25] 汪波, 罗毅飞, 张烁, 等. IGBT极限功耗与热失效机理分析[J]. 电工技术学报, 2016, 31(12): 135-141. Wang Bo, Luo Yifei, Zhang Shuo, et al.Analysis of limiting power dissipation and thermal failure mechanism[J]. Transactions of China Electro- technical Society, 2016, 31(12): 135-141. [26] Bryant T, Mawby A, Palmer R, et al.Exploration of power device reliability using compact device models and fast electro-thermal simulation[J]. IEEE Transa- ctions on Industrial Applications, 2008, 44(3): 894-903. [27] 赖伟, 陈民铀, 冉立, 等. 老化实验条件下的IGBT寿命预测模型[J]. 电工技术学报, 2016, 31(24): 173-180. Lai Wei, Chen Minyou, Ran Li, et al.IGBT lifetime model based on aging experiment[J]. Transaction of China Electrotechnical Society, 2016, 31(24): 173-180. [28] Qin Sun, Dui Hongna, Fan Xueling.A statistically consistent fatigue damage model based on Miner’s rule[J]. International Journal of Fatigue, 2014, 69: 16-21. [29] Drofenik U, Laimer G, Kolar W.Theoretical con- verter power density limits for forced convection cooling[C]//Proceeding of the International PCIM Europe Conference, Nuremberg, Germany, 2005: 608-619. [30] 杨世铭, 陶文铨. 传热学[M]. 4版. 北京: 教育出版社, 2006. [31] Terzulli G. Evolution of power capacitors for Electric Vehicles[DB/OL]. http://www.avx.com/docs/techinfo/ EvolutionPowerVehicles.pdf. 2018-10-11. [32] Kolar W, Round D.Analytical calculation of the RMS current stress on the DC-link capacitor of voltage- PWM converter systems[J]. IEE Proceedings-Electric Power Applications, 2006, 153(4): 535-543. [33] Pillay P, Krishnan R.Modeling, simulation, and analysis of permanent-magnet motor drives. Part I: the permanent-magnet synchronous motor drive[J]. IEEE Transactions on Industrial Applications, 1989, 25(2): 265-273. [34] Wen Xuhui, Hu Wei, Fan Tao, et al.Lifetime model research of motor drive system for electric vehicles[C]// 2007 International Conference on Electrical Machines and Systems (ICEMS), Seoul, South Korea, 2007: 129-132. [35] Wen Huiqing, Xiao Weidong, Wen Xuhui, et al.Analysis and evaluation of DC-link capacitors for high-power-density electric vehicle drive systems[J]. IEEE Transactions on Vehicular Technology, 2012, 61(7): 2950-2964.