Microstructure Evolution of Silicone Rubber Used for Composite Insulators under the Effects of Electric Field and Temperature
Liang Ying1, Gao Ting2, Wang Xiangnian2, Sun Mengting2
1. School of Physics and Electronic-Electrical Engineering Ningxia University Yinchuan 750021 China; 2. Hebei Provincial Key Laboratory of Power Transmission Equipment Security Defense North China Electric Power University Baoding 071003 China
Abstract:The inner temperature of UHV composite insulators is higher during their field operation. And the temperature may also be elevated be more higher when the partial discharge occurs. Then the aging of silicone rubber used for composite insulators will be more prominent under the action of strong electric field and high temperature. As we all know, the fine degradation process of SIR is difficult to be assessed with macroscopic characteristics. Therefore, it is necessary to study the micro-structural evolution of high temperature vulcanized silicone rubber under the synergistic effects of high temperature and electric field. In this paper, the molecular model of high temperature vulcanized silicone rubber has been constructed according to its actual parameters and the main reactions in silicone rubber. Based on the principle of molecular dynamics, the structural evolution for the built molecular model has been followed performed. While the micro-characteristic changes of silicone rubber under the synergistic effects of electric field and temperature have been explored. And the mechanical properties of silicone rubber have been further studied. It is found that the electric field has a significant effect on the bond length of the main chain, but the temperature has a significant effect on the bond angle and the chemical bond length of the cross-linking structure. The increase of temperature can soften the texture of silicone rubber and reduce the mechanical properties. However, the increase of electric field intensity makes the texture of silicone rubber hard and improves its mechanical properties. The research results can provide references for the optimization of composite insulator substrates from the micro level, as well as the correlation between micro and macro-characteristics of silicone rubber.
梁英, 高婷, 王祥念, 孙孟婷. 电场和温度协同作用下复合绝缘子用硅橡胶微观结构演化[J]. 电工技术学报, 2020, 35(7): 1575-1583.
Liang Ying, Gao Ting, Wang Xiangnian, Sun Mengting. Microstructure Evolution of Silicone Rubber Used for Composite Insulators under the Effects of Electric Field and Temperature. Transactions of China Electrotechnical Society, 2020, 35(7): 1575-1583.
[1] 张逸群, 赵志疆, 平林涛. 复合绝缘子憎水性丧失的研究[J]. 电气技术, 2009, 1:45-48. Zhang Yiqun, Zhao Zhijiang, Ping Lintao.The composite insulator hatred river character loses research[J]. Electrical Engineering, 2009, 1:45-48. [2] Du B X, Su J G, Han T.Temperature-dependent electrical tree in silicone rubber under repetitive pulse voltage[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2017, 24(4): 2291-2298. [3] 高岩峰, 王家福, 梁曦东, 等. 交直流电晕对高温硫化硅橡胶性能的影响[J]. 中国电机工程学报, 2016, 36(1): 274-284. Gao Yanfeng, Wang Jiafu, Liang Xidong, et al.Influence of AC and DC corona on high temperature vulcanized silicone rubber[J]. Proceedings of the CSEE, 2016, 36(1): 274-284. [4] 李震宇, 梁曦东, 周远翔. 直流电晕对硅橡胶材料憎水性的影响[J]. 中国电机工程学报, 2007, 27(24): 30-34. Li Zhenyu, Liang Xidong, Zhou Yuanxiang.Influences of DC corona on hydrophobicity of silicone rubber[J]. Proceedings of the CSEE, 2007, 27(24): 30-34. [5] Tu Youping, Zhang Hui, Xu Zhuo, et al.Influences of electric field distribution along the string on the aging of composite insulators[J]. IEEE Transactions on Power Delivery, 2013, 28(3): 1865-1871. [6] 李云鹏. 基于表面放电特性的硅橡胶老化状态评估及纳米改性[D]. 天津: 天津大学, 2012. [7] 彭功茂, 关志成, 张福增, 等. 复合绝缘子的直流人工污秽试验方法[J]. 高电压技术, 2011, 37(3): 570-576. Peng Gongmao, Guan Zhicheng, Zhang Fuzeng, et al.Test method of DC artificial contaminated composite insulators[J]. High Voltage Engineering, 2011, 37(3): 570-576. [8] 孙伟忠. 温度、酸碱对复合绝缘子憎水性的影响[J]. 云南电力技术, 2016, 44(5): 48-51. Sun Weizhong.Research on influence of temperature, acid and alkali on hydrophobicity of composite insulator[J]. Yunnan Electric Power, 2016, 44(5): 48-51. [9] Li Cheng, Hongwei Mei, Liming Wang, et al.Research on aging evaluation and remaining lifespan prediction of composite insulators in high temperature and humidity regions[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2016, 23(5): 2850-2857. [10] 杨涛. 温度及电场对油浸绝缘纸微观特性影响的分子动力学研究[D]. 重庆: 重庆大学, 2013. [11] 唐超, 张松, 张福州, 等. 变压器绝缘纸纤维素耐热老化性能提升的模拟及试验[J]. 电工技术学报, 2016, 31(10): 68-76. Tang Chao, Zhang Song, Zhang Fuxhou, et al.Simulation and experimental about the thermal aging performance improvement of cellulose insulation paper[J]. Transactions of China Electrotechnical Society, 2016, 31(10): 68-76. [12] 李庆民, 黄旭炜, 刘涛, 等. 分子模拟技术在高电压绝缘领域的应用进展[J]. 电工技术学报, 2016, 31(12): 1-13. Li Qingmin, Huang Xuwei, Liu Tao, et al.Application progresses of molecular simulation methodology in the area of high voltage insulation[J]. Transactions of China Electrotechnical Society, 2016, 31(12): 1-13. [13] 梁帅伟, 廖瑞金, 郝建, 等. 一种抗老化绝缘油对绝缘纸热老化影响及原因分析[J]. 电工技术学报, 2012, 27(5): 21-25. Liang Shuaiwei, Liao Ruijin, Hao Jian, et al.Effects on oil-immersed paper for an antioxidation insulation oil and cause analysis[J]. Transactions of China Electrotechnical Society, 2012, 27(5): 21-25. [14] 杨丽君, 廖瑞金, 孙才新, 等. 植物油对油浸绝缘纸老化速率的影响及机理[J]. 电工技术学报, 2012, 27(5): 32-39. Yang Lijun, Liao Ruijin, Sun Caixin, et al.Influence of vegetable oil on the thermal aging rate of kraft paper and its mechanism[J]. Transactions of China Electrotechnical Society, 2012, 27(5): 32-39. [15] 廖瑞金, 郝建, 梁帅伟, 等. 水分和酸对矿物油与天然酯混合油-纸绝缘热老化的影响[J]. 电工技术学报, 2010, 25(7): 31-37. Liao Ruijin, Hao Jian, Liang Shuaiwei, et al.Influence of water and acid on the thermal aging of mineral oil mixed with natural ester oil-paper insulation[J]. Transactions of China Electrotechnical Society, 2010, 25(7): 31-37. [16] Zhong Yuhu, Jing Xinli, Wang Shujuan, et al.Behavior investigation of phenolic hydroxyl groups during the pyrolysis of cured phenolic resin via molecular dynamics simulation[J]. Polymer Degradation and Stability, 2016, 125: 97-104. [17] Sami Paavilainen, Tomasz Rog, Ilpo Vattulainen.Analysis of twisting of cellulose nanofibrils in atomistic molecular dynamics simulations[J]. Journal of Physical Chemistry B, 2011, 115(14): 3747-3755. [18] Mazeau K, Heux L.Molecular dynamics simulations of bulk native crystalline and amorphous structures of cellulose[J]. Journal of Physical Chemistry B, 2008, 107(10): 2394-2403. [19] Matthews J F, Bergenstrahle M, Beckham G T, et al.High-temperature behavior of cellulose I[J]. The Journal of Physical Chemistry B, 2011, 115(10): 2155-2166. [20] Nyden M R, Noid D W.Molecular dynamics of initial events in the thermal degradation of polymers[J]. The Journal of Physical Chemistry, 1991, 95(2): 940-945. [21] Thakur Y, Dong Rui, Lin Minren, et al.Optimizing nanostructure to achieve high dielectric response with low loss in strongly dipolar polymers[J]. Nano Energy, 2015, 16: 227-234. [22] Odegard G M, Jensen B D, Gowtham S, et al.Predicting mechanical response of crosslinked epoxy using ReaxFF[J]. Chemical Physics Letters, 2014, 591: 175-178. [23] Li Huiran, Ren Dahua, Cheng Xinlu.The theoretical investigation of the β-crystobalite structure under the effect of electric field[J]. Computational Materials Science, 2015, 96: 306-311. [24] 苑世领, 张恒, 张冬菊. 分子模拟-理论与实验[M]. 北京: 化学工业出版社, 2016. [25] 刘安华, 游长江. 橡胶助剂[M]. 北京: 化学工业出版社, 2012. [26] 涂志秀, 刘安华, 王鹏. 甲基乙烯基硅橡胶加成硫化研究[J]. 弹性体, 2006, 16(5): 47-50. Tu Zhixiu, Liu Anhua, Wang Peng.Study on addition silicone rubber[J]. China Elastomerics, 2006, 16(5): 47-50.