Effects of Temperature on Partial Discharge Characteristics Induced by Suspended Bubbles in Flowing Transformer Oil and the Mechanism
Zhang Yongze1, Tang Ju1,2, Pan Cheng2, Luo Xinyu1
1. State Key Laboratory of Power Transmission Equipment and System Security and New TechnologyChongqing University Chongqing 400030 China; 2. School of Electrical Engineering and Automation Wuhan University Wuhan 430072 China
Abstract:Suspended bubbles are a typical insulation defect in transformer oil, which can easily initiate partial discharge (PD). To clarify the effect of temperature on PD characteristics induced by the bubbles in flowing transformer oil, an oil circulation experimental platform was designed, and a large number of PD experiments at different temperatures were conducted. Characteristic parameters of PD waveform, PD phase, PD frequency, and apparent charge were analyzed. The results show that the PD frequency declines rapidly and then increases slowly when the temperature increases from 40℃ to 80℃, whereas the average apparent charge continuously declines. Moreover, the temperature has no obvious influence on the time-domain current pulse. At different temperatures, PDs are mainly distributed in the negative half cycle of AC voltage, and the PD number at the phase of 270° is the largest. In addition, the mechanism of temperature influence on the PD characteristics in flowing transformer oil was discussed combining the simulations of deformation, fusion, and electric field distortion of the bubbles.
张永泽, 唐炬, 潘成, 骆欣瑜. 温度对流动变压器油中悬移气泡局部放电特性的影响与作用机制[J]. 电工技术学报, 2020, 35(6): 1357-1367.
Zhang Yongze, Tang Ju, Pan Cheng, Luo Xinyu. Effects of Temperature on Partial Discharge Characteristics Induced by Suspended Bubbles in Flowing Transformer Oil and the Mechanism. Transactions of China Electrotechnical Society, 2020, 35(6): 1357-1367.
[1] 陈曦, 陈伟根, 王有元, 等. 油纸绝缘局部放电与油中产气规律的典型相关分析[J]. 中国电机工程学报, 2012, 32(31): 92-99. Chen Xi, Chen Weigen, Wang Youyuan, et al.Canonical correlation analysis of dissolved gas production with partial discharges in oil paper insulation[J]. Proceedings of the CSEE, 2012, 32(31): 92-99. [2] Pan Cheng, Chen George, Tang Ju, et al.Numerical modeling of partial discharges in a solid dielectric- bounded cavity: a review[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2019, 26(3): 981-1000. [3] 高萌, 张乔根, 丁玉琴, 等. 油浸纸绝缘热致气泡形成特性[J]. 高电压技术, 2018, 44(11): 3634-3640. Gao Meng, Zhang Qiaogen, Ding Yuqin, et al.Characteristics of thermal-induced bubble formation in oil-impregnated paper insulation[J]. High Voltage Engineering, 2018, 44(11): 3634-3640. [4] 杨丽君, 孙伟栋, 李金忠, 等. 变压器油纸绝缘绕组过载条件下的热老化试验方法研究[J]. 电工技术学报, 2018, 33(3): 609-617. Yang Lijun, Sun Weidong, Li Jinzhong, et al.Investigation of thermal aging test method for transformer oil paper insulation under over-load condition[J]. Transactions of China Electrotechnical Society, 2018, 33(3): 609-617. [5] 张鹏宁, 李琳, 程志光, 等. 并联电抗器与变压器模型铁心振动仿真与试验对比[J]. 电工技术学报, 2018, 33(22): 5273-5281. Zhang Pengning, Li Lin, Cheng Zhiguang, et al.Vibration simulation and experiment comparison of shunt reactor and transformer model core[J]. Transactions of China Electrotechnical Society, 2018, 33(22): 5273-5281. [6] 崔鲁, 陈伟根, 杜劲超, 等. 植物油-纸绝缘气隙放电形态及发展特征[J]. 电工技术学报, 2018, 33(3): 618-626. Cui Lu, Chen Weigen, Du Jinchao, et al.Investigation on air-gap discharge patterns and development characteristics of vegetable oil-paper insulation[J]. Transactions of China Electrotechnical Society, 2018, 33(3): 618-626. [7] Pompili M.Partial discharge development and detection in dielectric liquids[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2009, 16(6): 1648-1654. [8] Góngora-Nieto M M, Pedrow P D, Swanson B G, et al. Impact of air bubbles in a dielectric liquid when subjected to high field strengths[J]. Innovative Food Science & Emerging Technologies, 2003, 4(1): 57-67. [9] Lee S M, Kang I S.Three-dimensional analysis of the steady-state shape and small-amplitude oscillation of a bubble in uniform and non-uniform electric fields[J]. Journal of Fluid Mechanics, 2000, 384: 59-91. [10] Sun Anbang, Huo Chao, Zhuang Jie.Formation mechanism of streamer discharges in liquids: a review[J]. High Voltage, 2016, 1(2): 74-80. [11] 温嘉烨, 李元, 林道鸿, 等.交流电压下变压器油中流注发展时空演化的光-电信号特征研究[J]. 电工技术学报, 2018, 34(4): 838-846. Wen Jiaye, Li Yuan, Lin Daohong, et al.Optical and electrical characteristics on space-time evolution of streamer propagation in transformer oil under AC voltage[J]. Transactions of China Electrotechnical Society, 2018, 34(4): 838-846. [12] 王同磊, 张乔根, 倪鹤立, 等. 变压器油中阴极放电起始过程的气泡模型[J]. 高电压技术, 2017, 43(6): 2042-2048. Wang Tonglei, Zhang Qiaogen, Ni Heli, et al.Bubble model of breakdown initiation process from cathode in transformer oil[J]. High Voltage Engineering, 2017, 43(6): 2042-2048. [13] 高俊青, 胡翔, 邵叶晨, 等. 计及主变上层油温约束的受端电网的最小切负荷量优化方法[J]. 电力系统保护与控制, 2018, 46(15): 36-44. Gao Junqing, Hu Xiang, Shao Yechen, et al.A minimization optimization method of cutting load in receiving power system considering linear constraints of top oil temperature of transformers[J]. Power System Protection and Control, 2018, 46(15): 36-44. [14] 杜剑波, 魏玉宾, 刘统玉. 光纤传感技术在变压器状态检测中的应用研究[J]. 电力系统保护与控制, 2008, 36(23): 36-40. Du Jianbo, Wei Yubin, Liu Tongyu.Study of optical fiber sensor technology applying in state dectecting of transformer[J]. Power System Protection and Control, 2008, 36(23): 36-40. [15] 鹿鸣明, 王逸飞, 郭创新, 等. 一种基于PHM考虑老化和设备状态的油浸式变压器故障率模型[J]. 电力系统保护与控制, 2014, 42(18): 66-71. Lu Mingming, Wang Yifei, Guo Chuangxin, et al.Failure rate model for oil-immersed transformer based on PHM concerning aging process and equipment inspection information[J]. Power System Protection and Control, 2014, 42(18): 66-71. [16] 廖瑞金, 刘刚, 杨丽君, 等. 植物油与普通绝缘纸复合绝缘的老化特征研究[J]. 高电压技术, 2008, 34(9): 1889-1892. Liao Ruijin, Liu Gang, Yang Lijun, et al.Research on ageing properties of insulation oil-paper composed of vegetable oil and regular paper[J]. High Voltage Engineering, 2008, 34(9): 1889-1892. [17] 池明赫, 陈庆国, 王新宇, 等. 温度对复合电压下油纸绝缘电场分布的影响[J]. 中国电机工程学报, 2015, 35(6): 1524-1532. Chi Minghe, Chen Qingguo, Wang Xinyu, et al.Influence of temperature on electric field distribution of oil-paper insulation under compound voltage[J]. Proceedings of the CSEE, 2015, 35(6): 1524-1532. [18] 周勇, 李庆民, 闫江燕, 等. 微量硫化物对变压器油纸绝缘热老化特性的影响[J]. 电工技术学报, 2016, 31(5): 135-143. Zhou Yong, Li Qingmin, Yan Jiangyan, et al.Impact of trace sulfide on the thermal aging properties of thetransformer oil-paper insulation[J]. Transactions of China Electrotechnical Society, 2016, 31(5): 135-143. [19] Clark F M.Dielectric strength of mineral oils[J]. Transactions of the American Institute of Electrical Engineers, 1935, 54(1): 50-55. [20] 粟茂, 李春茂, 夏国强, 等. 不同油流速度下油纸绝缘的局部放电特性研究[J]. 电工电能新技术, 2019, 38(7): 47-55. Su Mao, Li Chunmao, Xia Guoqiang, et al.Study on partial discharge characteristics of oil-paper insu- lation under different oil flow rates[J]. Advanced Technology of Electrical Engineering and Energy, 2019, 38(7): 47-55. [21] 周利军, 李锦平, 杨杨, 等. 牵引变压器绕组温升与油流的关联性[J]. 西南交通大学学报, 2016, 51(3): 487-494. Zhou Lijun, Li Jinping, Yang Yang, et al.Correlation between winding temperature rise and oil flow in traction transformer[J]. Journal of Southwest Jiaotong University, 2016, 51(3): 487-494. [22] 唐炬, 刘知远, 杨景刚, 等. 绝缘油中悬移微粒放电特性实验平台构建[J]. 高电压技术, 2016, 42(11): 3507-3514. Tang Ju, Liu Zhiyuan, Yang Jinggang, et al.Construction of suspended particles in insulating oil discharge characteristic experimental platform[J]. High Voltage Engineering, 2016, 42(11): 3507-3514. [23] Tang Ju, Zhang Yongze, Pan Cheng, et al.Impact of oil velocity on partial discharge characteristics induced by bubbles in transformer oil[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2018, 25(5): 1605-1613. [24] Pan Cheng, Tang Ju, Zhang Yongze, et al.Variation of discharge characteristics with temperature in moving transformer oil contaminated by metallic particles[J]. IEEE Access, 2018, 6: 40050-40058. [25] Yue Pengtao, Feng J J, Liu Chun, et al.A diffuse- interface method for simulating two-phase flows of complex fluids[J]. Journal of Fluid Mechanics, 1999, 515: 293-317. [26] Husain E, Nema R S. Analysis of paschen curves for air, N2 and SF6 using the townsend breakdown equation[J]. IEEE Transactions on Electrical Insulation, 1982, EI-17(4): 350-353. [27] Ovsyannikov A G, Korobeynikov S M, Vagin D V.Simulation of apparent and true charges of partial discharges[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2017, 24(6): 3687-3693. [28] Lemke E.Analysis of the partial discharge charge transfer in extruded power cables[J]. IEEE Electrical Insulation Magazine, 2013, 29(1): 24-28.