Abstract:In this paper, to observe the influence of the uniform electric field and extremely non-uniform electric field on water evaporation, the water body is used as the grounding electrode, and the high voltage is applied to the mesh electrode and the multi-wire electrode above the water surface. The results show that the use of a grid electrode to form a vertical uniform electric field can promote water evaporation. A multi-wire electrode can induce an extremely non-uniform electric field perpendicular to the water surface, while a discharge occurs on the surface of the wire electrode. When the discharge is just developed on the surface of the electrode, the space charge generated carries the water molecules back to the water surface, resulting in the effect of suppressing evaporation. With the increase of applied voltage, the discharge strength on the surface of the wire electrode increases, and the ion wind begins to develop, which increases the convective exchange between the water surface and the air and obviously promotes water evaporation. Larger evaporation rates can be obtained when using ion wind than just applying an electric field perpendicular to the water surface. In this paper, thermodynamic theory is used to explain the phenomena and principles of experiments.
张立, 杨兰均, 喻梦晗, 詹唯, 郭胜辉. 均匀电场和极不均匀电场对水蒸发的影响[J]. 电工技术学报, 2019, 34(18): 3920-3927.
Zhang Li, Yang Lanjun, Yu Menghan, Zhan Wei, Guo Shenghui. The Influence of Uniform Electric Field and Extremely Non-Uniform Electric Field on Water Evaporation. Transactions of China Electrotechnical Society, 2019, 34(18): 3920-3927.
[1] 张静岚, 符瑜科, 卢铁兵, 等. 交直流复合电压下棒-板电极起晕电压实验分析[J]. 电工技术学报, 2017, 32(4): 180-188. Zhang Jinglan, Fu Yuke, Lu Tiebing, et al.Experimental analysis on corona inception voltage of rod-plane air gaps under DC and AC composite voltage[J]. Transactions of China Electrotechnical Society, 2017, 32(4): 180-188. [2] 王振国, 卢铁兵, 王东来. 邻近直流导线时交流电晕电流脉冲特性试验[J]. 电工技术学报, 2017, 32(4): 170-179. Wang Zhenguo, Lu Tiebing, Wang Donglai, et al.Experiment of AC corona current pulses when adjacent to DC conductor[J]. Transactions of China Electrotechnical Society, 2017, 32(4): 170-179. [3] 邱志斌, 阮江军, 黄道春, 等. 直流导线和阀厅金具的电晕起始电压预测[J]. 电工技术学报, 2016, 31(12): 80-89. Qiu Zhibin, Ruan Jiangjun, Huang Daochun, et al.Prediction on corona onset voltage of DC conductors and valve hall fittings[J]. Transactions of China Electrotechnical Society, 2016, 31(12): 80-89. [4] 黄克捷, 张小青, 肖翔. 负极性衰减振荡冲击电晕的数学物理模型[J]. 电工技术学报, 2016, 31(13): 200-208. Huang Kejie, Zhang Xiaoqing, Xiao Xiang, et al.Mathematical physical model of the corona under negative damped oscillatory impulse[J]. Transactions of China Electrotechnical Society, 2016, 31(13): 200-208. [5] 刘云鹏, 吴振扬, 朱雷, 等. 基于迁移管法气压对氮气正电晕放电离子迁移率的影响[J]. 电工技术学报, 2016, 31(22): 223-229. Liu Yunpeng, Wu Zhenyang, Zhu Lei, et al.Influence of air pressure on corona discharge ion mobility of nitrogen based on drift tube method[J]. Transactions of China Electrotechnical Society, 2016, 31(22): 223-229. [6] 乔骥, 葛小宁, 邹军. 采用通量线-有限元混合方法求解有风条件下直流输电线路离子流场[J]. 电工技术学报, 2019, 34(5): 910-916. Qiao Ji, Ge Xiaoning, Zou Jun.A flux tracing-finite element hybrid method for calculating ion-flow field of HVDC overhead lines in presence of wind[J]. Transactions of China Electrotechnical Society, 2019, 34(5): 910-916. [7] 杨兰均, 王维, 林岑, 等. 电晕放电离子风实验与理论研究进展及应用发展前景[J]. 高电压技术, 2016, 42(4): 1100-1108. Yang Lanjun, Wang Wei, Lin Cen, et al.Experi- mental and theoretical research progress in ionic wind produced by corona discharge and its application[J]. High Voltage Engineering, 2016, 42(4): 1100-1108. [8] 王维, 杨兰均, 高洁, 等. 多针-网电极离子风激励器推力与推功比的实验研究[J]. 物理学报, 2013, 62(7): 284-290. Wang Wei, Yang Lanjun, Gao Jie, et al.Experi- mental study on the thrust and the ratio of thrust to power of multi-points/grid ionic wind exciter[J]. Acta Physica Sinica, 2013, 62(7): 284-290. [9] 王维, 杨兰均, 刘帅, 等. 线-铝箔电极电晕放电激励器的推力理论与实验研究[J]. 物理学报, 2015, 64(10): 105204(1-7). Wang Wei, Yang Lanjun, Liu Shuai, et al. Theoretical and experimental study of thrust produced by corona discharge exciter in wire-aluminum foil electrode configuration[J]. Acta Physica Sinica, 2015, 64(10): 105204-1: 15204-7. [10] Wang Wei, Yang Lanjun, Wu Kai, et al.Regulation- controlling of boundary layer by multi-wire-to- cylinder negative corona discharge[J]. Applied Thermal Engineering, 2017: 119. [11] Fujishima H, Ueda Y, Tomimatsu K, et al.Electro- hydrodynamics of spiked electrode electrostatic precipitators[J]. Journal of Electrostatics, 2004, 62(4): 291-308. [12] 袁均祥, 杨兰均, 张乔根, 等. 电极参数对尖-板电极空气放电离子风特性的影响[J]. 电工技术学报, 2010, 25(1): 24-29. Yuan Junxiang, Yang Lanjun, Zhang Qiaogen, et al.Ionic wind characteristic of tine-plat affected by electrode parameter from atmosphere discharge[J]. Transactions of China Electrotechnical Society, 2010, 25(1): 24-29. [13] Singh A, Vanga S K, Nair G R, et al.Electro- hydrodynamic drying (EHD) of wheat and its effect on wheat protein conformation[J]. LWT-Food Science and Technology, 2015, 64(2): 750-758. [14] Martynenko A, Zheng W.Electrohydrodynamic drying of apple slices: energy and quality aspects[J]. Journal of Food Engineering, 2016, 168: 215-222. [15] Dinani S T, Hamdami N, Shahedi M, et al.Mathe- matical modeling of hot air/electrohydrodynamic (EHD) drying kinetics of mushroom slices[J]. Energy Conversion and Management, 2014, 86(5): 70-80. [16] Isobe S, Barthakur N, Yoshino T, et al.Electro- hydrodynamic drying characteristics of agar gel[J]. Food Science & Technology International Tokyo, 1999, 5(2): 132-136. [17] Martynenko A, Astatkie T, Riaud N, et al.Driving forces for mass transfer in electrohydrodynamic (EHD) drying[J]. Innovative Food Science & Emerging Technologies, 2017, 43: 18-25. [18] Li Fade, Li Lite, Sun Jianfeng, et al.Effect of electrohydrodynamic (EHD) technique on drying process and appearance of okara cake[J]. Journal of Food Engineering, 2006, 77(2): 275-280. [19] Somayeh Taghian Dinani, Michel Havet, Nasser Hamdami, et al.Drying of mushroom slices using hot air combined with an electrohydrodynamic (EHD) drying system[J]. Drying Technology, 2014, 32(5): 597-605. [20] Lai F C, Sharma R K.EHD-enhanced drying with multiple needle electrode[J]. Drying Technology, 2003, 21(7): 1291-1306. [21] Lai Feng, Lai K W.EHD-enhanced drying with wire electrode[J]. Drying Technology, 2002, 20(7): 1393-1405. [22] Dalvand M J, Mohtasebi S S, Rafiee S.Modeling of electrohydrodynamic drying process using response surface methodology[J]. Food Science & Nutrition, 2014, 2(3): 200. [23] Lai F C.A prototype of EHD-enhanced drying system[J]. Journal of Electrostatics, 2010, 68(1): 101-104. [24] Martynenko A, Kudra T.Electrically-induced trans- port phenomena in EHD drying-a review[J]. Trends in Food Science & Technology, 2016, 54: 63-73. [25] 陈淑英. 空间电场阴极聚水技术的试验研究[D]. 呼和浩特: 内蒙古农业大学, 2007. [26] 刘滨疆. 空间电场空气聚水灌溉技术[J]. 农业技术与装备, 2011(5): 58-59. Liu Binjiang.Space electric field and air water irrigation technology[J]. Agricultural Technology and Equipment, 2011(5): 58-59. [27] Arif-Uz-Zaman M, Khan M R, Islam A K M S, et al. Atmospheric moisture: a potential source of energy[J]. Renewable Energy, 1993, 3(8): 941-945. [28] Reznikov M.Electrically enhanced condensation I: effects of corona discharge[J]. IEEE Transactions on Industry Applications, 2015, 51(2): 1137-1145. [29] Okuno Y, Minagawa M, Matsumoto H, et al.Simulation study on the influence of an electric field on water evaporation[J]. Journal of Molecular Structure Theochem, 2009, 904(1): 83-90. [30] 严璋, 朱德恒. 高电压绝缘技术[M]. 北京: 中国电力出版社, 2015. [31] 王竹溪. 热力学[M]. 2版. 北京: 北京大学出版社, 2014.