Dynamic State Estimation of Synchronous Machines Based on Robust Cubature Kalman Filter under Complex Measurement Noise Conditions
Li Yang1, Li Jing1, Chen Liang2, Li Guoqing1
1. School of Electrical Engineering Northeast Electric Power University Jilin 132012 China; 2. State Grid Hebei Economic Research Institute Shijiazhuang 050022 China
Abstract:Cubature Kalman filter (CKF) has good performance when handling nonlinear dynamic state estimations. However, it cannot work well in non-Gaussian noise and bad data environment due to the lack of auto-adaptive ability to measure noise statistics on line. In order to address the problem of behavioral decline and divergence when measure noise statistics deviate prior noise statistics, a new robust CKF (RCKF) algorithm is developed by combining the Huber’s M-estimation theory with the classical CKF, and thereby it is proposed to coping with the dynamic state estimation of synchronous generators in this study. The simulation results on the IEEE-9 bus system and New England 16-machine-68-bus system demonstrate that the estimation accuracy and convergence of the proposed RCKF are superior to those of the classical CKF under complex measurement noise environments including different measurement noises and bad data, and that the RCKF is capable of effectively eliminating the impact of bad data on the estimation effects.
李扬, 李京, 陈亮, 李国庆. 复杂噪声条件下基于抗差容积卡尔曼滤波的发电机动态状态估计[J]. 电工技术学报, 2019, 34(17): 3651-3660.
Li Yang, Li Jing, Chen Liang, Li Guoqing. Dynamic State Estimation of Synchronous Machines Based on Robust Cubature Kalman Filter under Complex Measurement Noise Conditions. Transactions of China Electrotechnical Society, 2019, 34(17): 3651-3660.
[1] 秦晓辉, 毕天姝, 杨奇逊. 基于WAMS 的电力系统机电暂态过程动态状态估计[J]. 中国电机工程学报, 2008, 28(7): 19-25. Qin Xiaohui, Bi Tianshu, Yang Qixun.Dynamic state estimator based on WAMS during power system transient process[J]. Proceedings of the CSEE, 2008, 28(7): 19-25. [2] Aminifar F, Shahidehpour M, Fotuhi-Firuzabad M.Power system dynamic state estimation with synchronized phasor measurements[J]. IEEE Transactions on Instrumentation & Measurement, 2014, 63(2): 352-363. [3] 罗深增, 李银红, 石东源. 广域测量系统可观性概率评估及其在PMU优化配置中的应用[J]. 电工技术学报, 2018, 33(8): 1844-1853. Luo Shenzeng, Li Yinhong, Shi Dongyuan.Wide area monitoring system observability probabilistic evaluation and it’s application in optimal PMU placement[J]. Transactions of China Electrotechnical Society, 2018, 33(8): 1844-1853. [4] 肖湘宁, 廖坤玉, 唐松浩, 等. 配电网电力电子化的发展和超高次谐波新问题[J]. 电工技术学报, 2018, 33(4): 707-720. Xiao Xiangning, Liao Kunyu, Tang Songhao, et al.Development of power-electronized distribution grids and the new superharmonics issues[J]. Transactions of China Electrotechnical Society, 2018, 33(4): 707-720. [5] Zhou Ning, Meng Da, Lu Shuai.Estimation of the dynamic states of synchronous machines using an extended particle filter[J]. IEEE Transactions on Power Systems, 2013, 28(4): 4152-4161. [6] Ghahremani E, Kamwa I.Dynamic state estimation in power system by applying the extended Kalman filter with unknown inputs to phasor measurements[J]. IEEE Transactions on Power Systems, 2011, 26(4): 2556-2566. [7] 殷实, 谭国俊. 一种基于扩展卡尔曼滤波算法的MMC系统故障诊断策略[J]. 电工技术学报, 2016, 31(19): 74-84. Yin Shi, Tan Guojun.A novel fault diagnosis strategy of MMC system based on EKFA[J]. Transactions of China Electrotechnical Society, 2016, 31(19): 74-84. [8] Zhao Junbo, Netto M, Mili L.A robust iterated extended Kalman filter for power system dynamic state estimation[J]. IEEE Transactions on Power Systems, 2017, 32(4): 3205-3216. [9] Gultekin S, Paisley J.Nonlinear Kalman filtering with divergence minimization[J]. IEEE Transactions on Signal Processing, 2017, 65(23): 6319-6331. [10] Qi Junjian, Sun Kai, Wang Jianhui, et al.Dynamic state estimation for multi-machine power system by unscented Kalman filter with enhanced numerical stability[J]. IEEE Transactions on Smart Grid, 2018, 9(2): 1184-1196. [11] 毕天姝, 陈亮, 薛安成, 等. 考虑调速器的发电机动态状态估计方法[J]. 电网技术, 2013, 37(12): 3433-3438. Bi Tianshu, Chen Liang, Xue Ancheng, et al.A dynamic state estimation method considering speed governors[J]. Power System Technology, 2013, 37(12): 3433-3438. [12] 孙国强, 王晗雯, 卫志农, 等. 基于无迹粒子滤波算法的发电机动态状态估计[J]. 电力系统自动化, 2017, 41(14): 133-139. Sun Guoqiang, Wang Hanwen, Wei Zhinong, et al.Dynamic state estimation for generators based on unscented particle filtering algorithm[J]. Automation of Electric Power Systems, 2017, 41(14): 133-139. [13] Afshari H H, Gadsden S A, Habibi S.Gaussian filters for parameter and state estimation: a general review of theory and recent trends[J]. Signal Processing, 2017, 135: 218-238. [14] 安军, 杨振瑞, 周毅博, 等. 基于平方根容积卡尔曼滤波的发电机动态状态估计[J]. 电工技术学报, 2017, 32(12): 234-240. An Jun, Yang Zhenrui, Zhou Yibo, et al.Dynamic state estimation for synchronous-machines based on square root cubature Kalman filter[J]. Transactions of China Electrotechnical Society, 2017, 32(12): 234-240. [15] 陈亮, 毕天姝, 李劲松, 等. 基于容积卡尔曼滤波的发电机动态状态估计[J]. 中国电机工程学报, 2014, 34(16): 2706-2713. Chen Liang, Bi Tianshu, Li Jinsong, et al.Dynamic state estimator for synchronous machines based on cubature Kalman filter[J]. Proceedings of the CSEE, 2014, 34(16): 2706-2713. [16] 毕天姝, 陈亮, 薛安成, 等. 基于鲁棒容积卡尔曼滤波器的发电机动态状态估计[J]. 电工技术学报, 2016, 31(4): 163-169. Bi Tianshu, Chen Liang, Xue Anchen, et al.Dynamic state estimator for synchronous-machines based on robust cubature Kalman filter[J]. Transactions of China Electrotechnical Society, 2016, 31(4): 163-169. [17] Sharma A, Srivastava S C, Chakrabarti S.A cubature Kalman filter based power system dynamic state estimator[J]. IEEE Transactions on Instrument Measurement, 2017, 66(8): 2036-2045. [18] 马安安, 江全元, 熊鸿韬, 等. 考虑量测坏数据的发电机动态状态估计方法[J]. 电力系统自动化, 2017, 41(14): 140-146. Ma Anan, Jiang Quanyuan, Xiong Hongtao, et al.Dynamic state estimation method for generator considering measurement of bad data[J]. Automation of Electric Power Systems, 2017, 41(14): 140-146. [19] Zhou Ning, Meng Da, Huang Zhenyu, et al.Dynamic state estimation of a synchronous machine using PMU data: a comparative study[J]. IEEE Transactions on Smart Grid, 2015, 6(1): 450-460. [20] Li Yang, Yang Zhen, Li Guoqing, et al.Optimal scheduling of an isolated microgrid with battery storage considering load and renewable generation uncertainties[J]. IEEE Transactions on Industrial Electronics, 2019, 66(2): 1565-1575.