Characteristics and Developments of Advanced Magnetic Materials in Electrical Engineering: A Review
Yang Qingxin1, 2, Li Yongjian2
1. Tianjin Key Laboratory of Advanced Electrical Engineering and Energy Technology Tianjin Polytechnic University Tianjin 300387 China; 2. Province-Ministry Joint Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability Hebei University of Technology Tianjin 300130 China
Abstract:Because of human concern for the growing demand for energy and the deterioration of resources and environment, making full development of advanced materials, especially the advanced magnetic materials in electrical engineering widely used in electrical machines, transformers and other electrical equipment, in order to saving energy and reducing consumption, has been a global consensus. Innovation and applications of advanced magnetic materials in electrical engineering such as electrical steel sheets, soft magnetic composite materials (SMCs), etc, have become the inexorable development trend in the field of electrical engineering, resulting in increasingly prominent impact on power systems at the same time. Therefore, great concerns are given from academic and engineering areas of all countries. The purpose of this paper is to comprehensively review the characteristics and development of the existing typical advanced magnetic materials in electrical engineering at home and abroad, and propose ideas and directions for future research and development. From the perspective of classifications, characteristics, applications and development trend, the possible and the potential progresses of advanced magnetic materials in electrical engineering are discussed emphatically in this paper, so that the readers can refer to it.
杨庆新, 李永建. 先进电工磁性材料特性与应用发展研究综述[J]. 电工技术学报, 2016, 31(20): 1-12.
Yang Qingxin, Li Yongjian. Characteristics and Developments of Advanced Magnetic Materials in Electrical Engineering: A Review. Transactions of China Electrotechnical Society, 2016, 31(20): 1-12.
[1] 卢凤喜, 谌剑, 姚昌国, 等. 世界及国内取向硅钢发展的现状[J]. 电器工业, 2008(5): 22-23. Lu Fengxi, Chen Jian, Yao Changguo, et al. The state of development of the oriented silicon steel of world and domestic[J]. Electrical Equipment Industry, 2008(5): 22-23. [2] 胡伯平. 稀土永磁材料的现状与发展趋势[J]. 磁性材料及器件, 2014, 45(2): 66-77. Hu Boping. Status and development tendency of rare-earch permanent magnet materials[J]. Magnetic Materials and Devices, 2014, 45(2): 66-77. [3] Nguyen Y M, Bourrier D, Charlot S, et al. Soft ferrite cores characterization for integrated micro-inductors[J]. Journal of Micromechanics & Microengineering, 2014, 476(1): 914-919. [4] Streckova M, Bures R, Faberova M, et al. A comparison of soft magnetic composites designed from different ferromagnetic powders and phenolic resins[J]. Chinese Journal of Chemical Engineering, 2015, 23(4): 736-743. [5] 卢志超, 李德仁, 周少雄. 非晶纳米晶合金的国内外发展概况及应用展望[J]. 新材料产业, 2002(3): 20-23. Lu Zhichao, Li Deren, Zhou Shaoxiong. Domestic and foreign development situation of amorphous nanocry-stalline alloy and its application prospect[J]. New Material Industry, 2002(3): 20-23. [6] 侯淑萍, 杨庆新, 陈海燕, 等. 超磁致伸缩材料的特性及其应用[J]. 兵器材料科学与工程, 2008, 31(5): 95-98. Hou Shuping, Yang Qingxin, Chen Haiyan, et al. Characteristic and application of giant magnetostri- ctive material[J]. Ordnance Material Science and Engineering, 2008, 31(5): 95-98. [7] 冯振华, 李德才, 杨文明. 磁性液体阻尼减振实验台的设计和实验分析[J]. 振动、测试与诊断, 2013, 33(1): 106-110. Feng Zhenhua, Li Decai, Yang Wenming. Design of magnetic fluid damping experimental platform and experimental analysis[J]. Journal of Vibration, Mea- surement & Diagnosis, 2013, 33(1): 106-110. [8] Pendry J B. Negative refraction makes a perfect lens[J]. Physical Review Letters, 2000, 85(15): 3966- 3969. [9] IEC 60404—3—2010 Magnetic materials-part 3: methods of measurement of the magnetic properties of electrical steel strip and sheet by means of a single sheet tester[S]. Edition 2.2. Consolidated Reprint. [10] Sun H, Coey J M D, Otani Y, et al. Magnetic properties of a new series of rare earth iron nitrides: R2Fe17Ny(y~2.6)[J]. Journal of Physics Condensed Matter, 1999, 30 (2): 6465. [11] Jaswal L, Singh B. Ferrite materials: a chronological review[J]. Journal of Integrated Science & Techno- logy, 2014, 2(2): 69-71. [12] 翁兴园. 我国软磁铁氧体产业发展现状分析[J]. 新材料产业, 2013(5): 34-37. Weng Xingyuan. Situation analysis ferrite industry in China[J]. New Material Industry, 2013(5): 34-37. [13] 陈国华. 21世纪软磁铁氧体材料和元件发展趋势[J]. 磁性材料及器件, 2001, 32(4): 34-36. Chen Guohua. Soft ferrite materials and components development trends in the 21st century[J]. Magnetic Materials and Devices, 2001, 32(4): 34-36. [14] 李永建, 杨庆新, 安金龙, 等. 软磁复合材料的三维磁特性检测实验研究[J]. 电工技术学报, 2012, 27(9): 160-165. Li Yongjian,Yang Qingxin, An Jinlong, et al. Three dimensional magnetic properties measurement of soft magnetic composite materials[J]. Transactions of China Electrotechnical Society, 2012, 27(9): 160- 165. [15] Appino C, Bottauscio O, Barriere O de la, et al. Computation of eddy current losses in soft magnetic composites[J]. IEEE Transactions on Magnetics, 2012, 48(11): 3470-3473. [16] 张甫飞. 非晶纳米晶合金材料的工艺技术、产业化和应用[J]. 磁性材料及器件, 2004, 35(5): 13-16. Zhang Fufei. Application, industrialization and tech- nology of amorphous and nanocrystalline alloy[J]. Magnetic Materials and Devices, 2004, 35(5): 13-16. [17] 张敏, 宣天鹏. 非晶与纳米晶铁基软磁合金材料的研究现状[J]. 金属功能材料, 2010, 17(6): 69-72. Zhang Min, Xuan Tianpeng. Current research of amorphous and nanocrystalline Fe-based soft mag- netic alloys[J]. Metallic Functional Materials, 2010, 17(6): 69-72. [18] Dapino M J, Smith R C, Flatau A B. Structural magnetic strain model for magnetostrictive trans- ducers[J]. IEEE Transactions on Magnetics, 2000, 36(3): 545-556. [19] 邬义杰. 超磁致伸缩材料发展及其应用现状研究[J]. 机电工程, 2004, 21(4): 55-58. Wu Yijie. Giant magnetostrictive materials and its application research state[J]. Mechanical & Electrical Engineering Magazine, 2004, 21(4): 55-58. [20] 王宇鑫, 赵慎强, 杜春风, 等. 纳米磁性液体的制备方法[J]. 金属功能材料, 2010, 17(1): 62-65. Wang Yuxin, Zhao Shenqiang, Du Chunfeng, et al. Preparation methods of nanosized magnetic fluids[J]. Metallic Functional Materials, 2010, 17(1): 62-65. [21] Sabata D, PoPa N C, Potencz I, et al. Inductive transducers with magnetic fluids[J]. Sensors and Actuators: Physical, 1992, 32(1-3): 678-681. [22] 陈贤飞, 尤晓光, 涂蓉. MR成像在磁流体肿瘤靶向热疗中的应用前景研究[J]. 国际医学放射学杂志, 2014, 37(2): 147-151. Chen Xianfei, You Xiaoguang, Tu Rong. The pro- spective of targeted tumor treatment with magnetic fluid hyperthermia[J]. International Journal of Radi- ation Medicine, 2014, 37(2): 147-151. [23] Al A, Engheta N. Pairing an epsilon-negative slab with a mu-negative slab: Resonance, tunneling and transparency[J]. IEEE Transactions on Antennas Pro- pagat, 2003, 51(10): 2558-2571. [24] 毛卫民, 杨平. 电工钢的材料学原理[M]. 北京: 高等教育出版社, 2014. [25] Moses A. Characterisation and performance of elec- trical steels for power transformers operating under extremes of magnetisation conditions[J]. University of Bradford, 2003, 46(3): 169-179. [26] Hoffer G, Strnat K. Magnetocrystalline anisotropy of YCo5 and Y2Co17[J]. IEEE Transactions on Mag- netics, 1966, 2(3): 487-489. [27] Croat J J, Herbst J F, Lee R W, et al. Pr-Fe and Nd-Fe-based materials: a new class of high-perfor- mance permanent magnets[J]. Journal of Applied Physics, 1984, 55(6): 2078-2082. [28] 李大勇, 段焕强. 钐铁氮稀土永磁材料产业化进展[J]. 中国新技术新产品, 2012(20): 146-148. Li Dayong, Duan Huanqiang. Sm-Fe-N rare earth permanent magnet materials industry progress[J]. China New Technologies and Products, 2012(20): 146-148. [29] 韩志全. 软磁铁氧体生产国内外近期动态[J]. 磁性材料及器件, 2010, 41(1): 1-11. Han Zhiquan. Recent development of production of soft ferrite materials[J]. Magnetic Materials and Devices, 2010, 41(1): 1-11. [30] 王天会, 毕建国, 李昂. 宽温高磁导率软磁铁氧体材料M10T的开发[J]. 磁性材料及器件, 2014, 45(2): 63-65. Wang Tianhui, Bi Jianguo, Li Ang. Development of soft ferrite material M10T with wide operation temperature and high permeability[J]. Magnetic Materials and Devices, 2014, 45(2): 63-65. [31] 赵七一, 李晓光, 胡秉祥, 等. 中国软磁铁氧体材料新应用市场发展分析[J]. 磁性材料及器件, 2013, 44(2): 69-74. Zhao Qiyi, Li Xiaoguang, Hu Bingxiang, et al. China soft ferrite materials development of new application markets[J]. Magnetic Materials and Devices, 2013, 44(2): 69-74. [32] 许林皓, 于海琛, 张洪平, 等. 铁粉软磁粉芯制备工艺的研究进展[J]. 钢铁研究学报, 2015, 27(12): 1-9. Xu Linhao, Yu Haichen, Zhang Hongping, et al. Research progress of preparation of Fe powder soft magnetic core[J]. Steel Research, 2015, 27(12): 1-9. [33] 李发长, 冯晓鹏, 李一, 等. 热处理工艺对铁基软磁复合材料电磁性能的影响[J]. 粉末冶金材料科学与工程, 2015(2): 319-324. Li Changfa, Feng Xiaopeng, Li Yi, et al. Effect of heat treatment process on magnetic and electrical properties of Fe-based soft magnetic composites[J]. Powder Metallurgy Materials Science and Engin- eering, 2015(2): 319-324. [34] 黄允凯, 朱建国, 胡虔生. 软磁复合材料在电机中的应用[J]. 微特电机, 2006, 34(11): 1-3. Huang Yunkai, Zhu Jianguo, Hu Qiansheng. A review on applications of soft magnetic composite materials in electrical machines[J]. Small & Special Electrical Machines, 2006, 34(11): 1-3. [35] 何峻, 赵栋梁. 非晶软磁材料研究现状与发展趋势[J]. 金属功能材料, 2015(6): 1-12. [36] 周少雄. 新材料发展趋势及铁基非晶合金现状[C]//宝钢学术年会, 2015. [37] 李扩社, 徐静, 杨红川, 等. 稀土超磁致伸缩材料发展概况[J]. 稀土, 2004, 25(4): 51-56. Li Kuoshe, Xu Jing, Yang Hongchuan, et al. Development of rare earth giant magnetostrictive materials[J]. Chinese Rare Earths, 2004, 25(4): 51- 56. [38] 万永平, 方岱宁, 黄克智. 磁致伸缩材料的非线性本构关系[J]. 力学学报, 2001, 33(6): 749-757. Wan Yongping, Fang Daining, Huang Kezhi, et al. Nonlinear constitutive relations for magnetostrictive materials[J]. Acta Mechanica Sinica, 2001, 33(6): 749-757. [39] Mitamura Y, Yano T, Nakamura W, et al. A magnetic fluid seal for rotary blood pumps: behaviors of magnetic fluids in a magnetic fluid seal[J]. Bio- medical Materials and Engineering, 2013, 23(1-2): 63-74. [40] 刘雪莉, 杨庆新, 杨文荣, 等. 磁性液体磁粘特性的研究[J]. 功能材料, 2013, 44(24): 3554-3556. Liu Xueli, Yang Qingxin, Yang Wenrong, et al. Research on viscosity of magnetic liquids in magnetic field[J]. Journal of Functional Materials, 2013, 44(24): 3554-3556. [41] Spong K, Aperiosu S, Fontana E, et al. Giant magnetoresistive spin valve bridge sensor[J]. IEEE Transactions on Magnetics, 1996, 32(2): 366-371. [42] Shelby R A, Smith D R, Schultz S. Experimental verification of a negative index of refraction[J]. Science, 2001, 292: 77-79. [43] 博思数据研究中心. 2011-2015年中国电工钢板(硅钢片/矽钢片)行业深度调研与投资前景研究报告[R]. http://www.bosidata.com. [44] 国际Enerdata能源资讯公司. http://www.enerdata. net/. International Enerdata Energy Information Company. http://www.enerdata. net/. [45] Takashi D, Hironori N. High silicon steel sheet realizing excellent high frequencyreactor perfor- mance[C]//IEEE Applied Power Electronics Con- ference and Exposition (APECE), 2012: 1740-1746. [46] Zhou P, Zhong Y, Wang H, et al. Effects of parallel magnetic field onelectrocodeposition behavior of Fe/nano-Si particles composite electroplating[J]. Applied Surface Science, 2013, 282: 624-631. [47] 安恺, 王雷, 郝建军. 环保硅钢绝缘涂层的研究进展[J]. 电镀与环保, 2015, 35(4): 1-3. An Kai, Wang Lei, Hao Jianjun. Research progress of eco-friendly silicon steel insulation coating[J]. Electroplating & Pollution Control, 2015, 35(4): 1-3. [48] 柳金龙, 沙玉辉, 柯云海, 等. 轧制复合法制备硅浓度梯度高硅钢薄带的织构演变[J]. 功能材料, 2014, 45(21): 21140-21143. Liu Jinlong, Sha Yuhui, Ke Yunhai, et al. Texture evolution during the process of preparation of gradient high silicon steel sheets produced by rolling bonding method[J]. Journal of Functional Materials, 2014, 45(21): 21140-21143. [49] Carpenter J S, Nizolek T, McCabe R J, et al. Bulk texture evolution of nanolamellar Zr-Nb composites processed via accumulative roll bonding[J]. Acta Materialia, 2015, 92: 97-108. [50] 刘九皋, 茅柳强, 陆自强, 等. 宽温高直流叠加低功耗YR950锰锌铁氧体材料[J]. 磁性材料及器件, 2014, 45(6): 26-28, 58. Liu Jiugao, Mao Liuqiang, Lu Ziqiang, et al. Development of wide-temperature, high DC-bias and low power loss YR950 MnZn ferrite material[J]. Magnetic Materials and Devices, 2014, 45(6): 26-28, 58. [51] Guo Y G, Zhu J G, Dorrell D G. Design and analysis of a claw pole permanent magnet motor with molded soft magnetic composite core[J]. IEEE Transactions on Magnectics, 2009, 45(10): 4582-4585. [52] 刘颖, 安德鲁·贝克, 翁履谦. 软磁复合材料研究进展[EB/OL]. 北京: 中国科技论文在线[2007-04-20]. http://www.paper.edu.cn/releasepaper/content/200704- 534. [53] 张志, 孙楠, 许泽兵. 非晶合金发展及制备[J]. 科技信息: 科学教研, 2007(26): 177-179. Zhang Zhi, Sun Nan, Xu Zebing. Development and preparation of amorphous alloy[J]. Information Science and Technology: Science and Research, 2007(26): 177-179. [54] 高适. 非晶纳米晶软磁合金的特性及其在电力电子设备中的应用[J]. 磁性元件与电源, 2012(6): 133- 139. Gao Shi. Characteristics of amorphous and nanocry- stalline soft magnetic alloy and its application in power electronic equipment[J]. Magnetic Com- ponents and Power Supply, 2012(6): 133-139. [55] 宣振兴, 邬义杰, 王慧忠, 等. 超磁致伸缩材料发展动态与工程应用研究现状[J]. 轻工机械, 2011, 29(1): 116-119. Xuan Zhenxing, Wu Yijie, Wang Huizhong, et al. Development and applications research on giant mag- netostrictive materials[J]. Light Industry Machinery, 2011, 29(1): 116-119. [56] 孟祥熙. 稀土超磁致伸缩材料的制备工艺与性能研究[D]. 天津: 河北工业大学, 2007. [57] Odenbach S, Fannin P, Schaumburg G. Thermal transport in magnetic fluids[J]. European Space Agency, 2005, 1290: 194-201. [58] Baibich N, Broto M, Fert A, et al. Giant magnetoresi- stance of (001)Fe/(001)Cr magnetic superlattices[J]. Physical Review Letters, 1988, 61(21): 2472-2475.