Abstract:Inspired by the highly efficient antibody-antigen recognition and memory mechanism of biological immune system, a self-organization antibody net (soAbNet) and the antibody generation algorithm are proposed and applied to fault diagnosis for power transformer. By the new definitions of antibody style and antibody density, the soAbNet works well with the initial number of antibodies, need not set any other artificial parameters and thresholds. According the antibody generation algorithm, antibodies learn and memory the characters of antigens effectively by three different strategies: antibody evolution, antibody combination and antibody production. Experimental result on Iris dataset from the UCI and diagnosis result on dissolved gas analysis data demonstrate that the proposed soAbNet can make full use of a priori information, it has effective classifying capability as well as higher precision.
李中, 苑津莎, 张利伟. 基于自组织抗体网络的电力变压器故障诊断[J]. 电工技术学报, 2010, 25(10): 200-206.
Li Zhong, Yuan Jinsha, Zhang Liwei. Fault Diagnosis for Power Transformer Based on the Self-Organization Antibody Net. Transactions of China Electrotechnical Society, 2010, 25(10): 200-206.
[1] Thang K F, Aggarwal R K, Mc Grail A J, et a1. Analysis of power transformer dissolved gas data using the self-organizing map[J]. IEEE Transactions on Power Delivery, 2003, 18(4): 1241-1248. [2] 章剑光, 周浩, 项灿芳. 基于Super SAB神经网络算法的主变压器故障诊断模型[J]. 电工技术学报, 2004, 19(7): 49-52, 58. [3] 王楠, 律方成, 刘云鹏, 等. 基于决策表约简的变压器故障诊断Petri网络模型及其应用研究[J]. 电工技术学报, 2003, 18(6): 88-92, 76. [4] 吴立增, 朱永利, 苑津莎. 基于贝叶斯网络分类器的变压器综合故障诊断方法[J]. 电工技术学报, 2005, 20(4): 45-51. [5] Lü Ganyun, Cheng Haozhong, Zhai Haibao, et al. Fault diagnosis of power transformer based on multi- layer SVM classifier[J]. Electric Power Systems Research, 2005, 75(1): 1-7. [6] Leandro N, de Castro, Jonathan T. Artificial immune systems: a new computational intelligence approach[M]. Springer Verlag, 2002. [7] Forrest S, Hofmeyr S A, Somayaji A. Computer immunology[C]. Communications of the ACM, 1997, 40(10): 88-96. [8] 焦李成, 杜海峰. 人工免疫系统进展与展望[J]. 电子学报, 2003, 31(10): 1540-1548. [9] Hart E, Timmis J. Application areas of ais: past, present and future[C]. Proceedings of the 4th International Conference on Artificial Immune Systems, Banff, Canada, 2005: 483-497. [10] 李涛. 计算机免疫学[M]. 北京: 电子工业出版社, 2006. [11] 公茂果, 杜海峰, 焦李成. 基于人工免疫响应的线性系统逼近[J]. 中国科学E辑, 2005, 35(12): 1288-1233. [12] 李玉龙, 宗伟, 吕鲜艳, 等.基于抗体浓度调节新定义下的免疫遗传算法在电压无功优化中的应用[J].电工技术学报, 2008, 23(2): 115-119. [13] De Castro L N, Von Zuben F J. An evolutionary immune system network for data clustering[C]. Proceedings of the Sixth Brazilian Symposium on Neural Networks, Rio de Janeiro, 2000: 84-89. [14] Dasarathy Belur V. Nosing around the neighborhood: a new system structure and classification rule for recognition in partially exposed environments[J]. IEEE Trans. Pattern Analysis and Machine Intelli- gence, 1980, 2(1): 67-71. [15] 夏胜平, 张乐锋, 虞华, 等. 基于RSOM树模型的机器学习原理与算法研究[J]. 电子学报, 2005, 33(5): 939-944. [16] 庄健, 王娜, 杜海峰, 等. 一种模糊人工免疫网络故障诊断策略[J]. 自然科学进展, 2007, 17(11): 1544-1554.