|
|
Overview and Prospect of Redundancy Machines: Topologies and Applications |
Sun Pengcheng1, Jia Shaofeng1, Liang Deliang1, Qu Ronghai2 |
1. State Key Laboratory of Electrical Insulation and Power Equipment Xi’an Jiaotong University Xi’an 710049 China; 2. State Key Laboratory of Advanced Electromagnetic Technology Huazhong University of Science and Technology Wuhan 430074 China |
|
|
Abstract Redundancy machines are a class of high-reliability machines with redundancy design. They have redundancy configurations of operating units and can continue to work if one or several operating units fail. Therefore, redundancy machines have significant potential in complex and harsh environments, such as aerospace, ship propulsion, and electric vehicles. This paper aims to review and categorize existing redundancy machines, offering a reference for selecting suitable machines for different applications. From the perspective of redundancy level, redundancy machines can be categorized into modular, component, and compound redundancy machines. This paper sequentially introduces the operating principles of different redundancy machines, analyzes innovations in their topologies, and summarizes their advantages and disadvantages. (1) Modular-redundancy machines consist of multiple modules with independent operating capabilities within the machine system. It is one of the most direct methods of improving motor system reliability. Module redundancy includes motor redundancy and channel redundancy. Motor redundancy, which operates at a higher level than channel redundancy, can completely isolate the secondary effects of faults and effectively improve system reliability. However, it has a large system volume and low power density. (2) The proper operation of a motor system requires the collaboration of several components, including the armature windings, excitation sources, and power converter. Component redundancy is designed for different components in the motor system, including winding redundancy, phase redundancy, excitation redundancy, and bridge redundancy. Component redundancy has a lower redundancy level than modular redundancy and focuses on the components needed to achieve torque output. Component redundancy occurs within a single motor system and is characterized by higher power density than modular redundancy. (3) Compound redundancy combines modular and component redundancy within a motor system. With two or more redundancy designs, compound redundancy can address a wide range of faults, increasing the motor system’s reliability. Many feasible compound redundancy machines have been widely studied and applied. However, the reliability and feasibility of some novel topologies need to be further verified in applications. Finally, this paper reviews redundancy machines’ actual and potential applications in aerospace, ship propulsion, and electric vehicles. As motor systems are widely used in safety-critical applications, their safety and reliability will garner increasing attention. The main development directions in redundancy machines will focus on the topology and application of new redundancy machines, synergistic enhancement of reliability and power density, efficient and reliable drive control and fault-tolerant control, and system-level simulation and reliability assessment methods. As researchers continue to improve performance, redundancy machines are expected to have broader application prospects in the future.
|
Received: 21 March 2024
|
|
|
|
|
[1] Sayed E, Abdalmagid M, Pietrini G, et al.Review of electric machines in more-/hybrid-/turbo-electric air- craft[J]. IEEE Transactions on Transportation Elec- trification, 2021, 7(4): 2976-3005. [2] 李亚, 周庆林, 丁石川, 等. 表嵌式交替极永磁电机拓扑演化及气隙磁场调制效应研究[J]. 电工技术学报, 2023, 38(12): 3188-3198. Li Ya, Zhou Qinglin, Ding Shichuan, et al.Investi- gation of topologies evolution and air-gap field modulation effect on surface-inset consequent-pole PM machines[J]. Transactions of China Electro- technical Society, 2023, 38(12): 3188-3198. [3] Liu Chunhua, Chau K T, Lee C H T, et al. A critical review of advanced electric machines and control strategies for electric vehicles[J]. Proceedings of the IEEE, 2021, 109(6): 1004-1028. [4] 关涛, 刘大猛, 何永勇. 永磁轮毂电机技术发展综述[J]. 电工技术学报, 2024, 39(2): 378-396. Guan Tao, Liu Dameng, He Yongyong.Review on development of permanent magnet in-wheel motors[J]. Transactions of China Electrotechnical Society, 2024, 39(2): 378-396. [5] Barzkar A, Ghassemi M.Electric power systems in more and all electric aircraft: a review[J]. IEEE Access, 2020, 8: 169314-169332. [6] Bolvashenkov I, Herzog H G, Ismagilov F, et al.Reliability and fault tolerance assessment of multi- motor electric drives with multi-phase traction motors[M]//Fault-tolerant traction electric drives, Singapore: Springer, 2020: 1-24. [7] 段富海, 马骏, 张慕天. 基于GO法的某型飞机电传操纵杆系统余度研究[J]. 大连理工大学学报, 2020, 60(2): 149-158. Duan Fuhai, Ma Jun, Zhang Mutian.Study of redundancy of fly-by-wire joystick system of a certain aircraft based on GO methodology[J]. Journal of Dalian University of Technology, 2020, 60(2): 149-158. [8] Zhao Tianxu, Wu Shaopeng, Cui Shumei.Multiphase PMSM with asymmetric windings for more electric aircraft[J]. IEEE Transactions on Transportation Electrification, 2020, 6(4): 1592-1602. [9] 贾少锋, 刘紫薇, 梁得亮. 多相电机容错控制策略综述[J]. 西安交通大学学报, 2021, 55(6): 176-184. Jia Shaofeng, Liu Ziwei, Liang Deliang.Review of fault-tolerant control strategies for multiphase machines[J]. Journal of Xi’an Jiaotong University, 2021, 55(6): 176-184. [10] 陶涛, 赵文祥, 程明, 等. 多相电机容错控制及其关键技术综述[J]. 中国电机工程学报, 2019, 39(2): 315-326. Tao Tao, Zhao Wenxiang, Cheng Ming, et al.Review on fault-tolerant control of multi-phase machines and their key technologies[J]. Proceedings of the CSEE, 2019, 39(2): 315-326. [11] 王宇, 张成糕, 郝雯娟. 永磁电机及其驱动系统容错技术综述[J]. 中国电机工程学报, 2022, 42(1): 351-371. Wang Yu, Zhang Chenggao, Hao Wenjuan.Overview of fault-tolerant technologies of permanent magnet brushless machine and its control system[J]. Pro- ceedings of the CSEE, 2022, 42(1): 351-371. [12] 孙晓哲, 吴江, 石林轩, 等. 双余度机电作动系统动态力均衡控制方法研究[J]. 北京航空航天大学学报, 2024, 44(增刊1): 195-206. Sun Xiaozhe, Wu Jiang, Shi Linxuan.Mechanism and sensitivity of force fight in dual redundant electro- mechanical actuators[J]. Acta Aeronautica et Astro- nautica Sinica, 2024, 44(S1): 195-206. [13] 陈思敏. 航空航天用对称结构型双余度永磁电机的研究[D]. 哈尔滨: 哈尔滨工业大学, 2022. Chen Simin.Research on dual-redundancy PM motor with symmetrical structure for aerospace[D]. Harbin: Harbin Institute of Technology, 2022. [14] Sun Pengcheng, Jia Shaofeng, Liang Deliang, et al.A review on the development of high-reliability motor system for safety-critical applications-from redun- dancy design prospective[J]. IEEE Transactions on Transportation Electrification, 2023, 10(3): 7374-7388. [15] 肖雄, 白秉堃, 张勇军, 等. 一种减小双电机转矩差的主从结构模型预测直接转矩控制优化控制策略[J]. 中国电机工程学报, 2023, 43(15): 6086-6098. Xiao Xiong, Bai Bingkun, Zhang Yongjun, et al.An optimized reduction of torque difference master-slave model predictive direct torque control scheme for the dual motor[J]. Proceedings of the CSEE, 2023, 43(15): 6086-6098. [16] Wang Wenwei, Li Yiding, Shi Junhui, et al.Vibration control method for an electric city bus driven by a dual motor coaxial series drive system based on model predictive control[J]. IEEE Access, 2018, 6: 41188-41200. [17] 马吴涵, 陈颖, 马天宇, 等. 破冰船电力推进系统在特殊工况下的控制策略[J]. 船电技术, 2024, 44(1): 58-63. Ma Wuhan, Chen Ying, Ma Tianyu, et al.Control strategies for the power propulsion system of icebreakers in special conditions[J]. Marine Electric & Electronic Engineering, 2024, 44(1): 58-63. [18] Feng Yanbiao, Zhu Haijia, Dong Zuomin.Simu- ltaneous and global optimizations of LNG-fueled hybrid electric ship for substantial fuel cost, CO2, and methane emission reduction[J]. IEEE Transactions on Transportation Electrification, 2023, 9(2): 2282-2295. [19] Boulon L, Hissel D, Bouscayrol A, et al.Simulation model of a military HEV with a highly redundant architecture[J]. IEEE Transactions on Vehicular Technology, 2010, 59(6): 2654-2663. [20] Mazeh H, Saied M, Shraim H, et al.Fault-tolerant control of an hexarotor unmanned aerial vehicle applying outdoor tests and experiments[J]. IFAC- Papers On Line, 2018, 51(22): 312-317. [21] Ortiz-Torres G, Castillo P, Sorcia-Vázquez F D J, et al. Fault estimation and fault tolerant control strategies applied to VTOL aerial vehicles with soft and aggressive actuator faults[J]. IEEE Access, 2020, 8: 10649-10661. [22] 韩建斌, 张卓然, 黄健, 等. 分布式电驱动系统永磁同步电机改进型反馈式弱磁控制策略研究[J]. 电气工程学报, 2021, 16(4): 85-92. Han Jianbin, Zhang Zhuoran, Huang Jian, et al.Research on improved feedback field-weakening control strategy of permanent magnet synchronous motor for distributed drive system[J]. Journal of Electrical Engineering, 2021, 16(4): 85-92. [23] 杨植, 严新平, 欧阳武, 等. 船舶轮缘推进装置驱动电机及控制方法研究进展[J]. 电工技术学报, 2022, 37(12): 2949-2960. Yang Zhi, Yan Xinping, Ouyang Wu, et al.A review of electric motor and control technology for rim- driven thruster[J]. Transactions of China Electro- technical Society, 2022, 37(12): 2949-2960. [24] Buticchi G, Wheeler P, Boroyevich D.The more- electric aircraft and beyond[J]. Proceedings of the IEEE, 2023, 111(4): 356-370. [25] Lu Yang, Li Jian, Lu Hanxiao, et al.Six-phase double-stator inner-rotor axial flux PM machines with novel detached winding[J]. IEEE Transactions on Industry Applications, 2017, 53(3): 1931-1941. [26] Zhang Zhuoran, Geng Weiwei, Liu Ye, et al.Feasibi- lity of a new ironless-stator axial flux permanent magnet machine for aircraft electric propulsion application[J]. CES Transactions on Electrical Machines and Systems, 2019, 3(1): 30-38. [27] Sala G, Gerada D, Gerada C, et al.Radial force control for triple three-phase sectored SPM machines. part I: machine model[C]//2017 IEEE Workshop on Electrical Machines Design, Control and Diagnosis (WEMDCD), Nottingham, UK, 2017: 193-198. [28] Wen Zhuang, Di Nardo M, Sala G, et al.Modular power sharing control for bearingless multithree phase permanent magnet synchronous machine[J]. IEEE Transactions on Industrial Electronics, 2022, 69(7): 6600-6610. [29] Wang Bo, Wang Jiabin, Griffo A, et al.Experimental assessments of a triple redundant nine-phase fault- tolerant PMA SynRM drive[J]. IEEE Transactions on Industrial Electronics, 2019, 66(1): 772-783. [30] 汪波, 徐文翰, 查陈诚, 等. 多三相分布式绕组和集中式绕组永磁磁阻电机对比研究[J]. 电工技术学报, 2024, 39(10): 2984-2994. Wang Bo, Xu Wenhan, Zha Chencheng, et al.Comparative study on triple 3-phase PMA-SynRM with distributed winding and concentrated winding[J]. Transactions of China Electrotechnical Society, 2024, 39(10): 2984-2994. [31] 魏永清, 康军, 曾海燕, 等. 十二相永磁电机驱动系统的容错控制策略[J]. 电工技术学报, 2019, 34(21): 4467-4473. Wei Yongqing, Kang Jun, Zeng Haiyan, et al.Fault- tolerant control strategy for twelve-phase permanent magnet synchronous motor propulsion system[J]. Transactions of China Electrotechnical Society, 2019, 34(21): 4467-4473. [32] Wang Bo, Hu Jiapeng, Hua Wei, et al.Fault operation analysis of a triple-redundant three-phase PMA- SynRM for EV application[J]. IEEE Transactions on Transportation Electrification, 2021, 7(1): 183-192. [33] Wu Lijian, Wang Wenting, Lü Zekai, et al.Coupling effect on unbalanced voltages and power under faulty condition in triple three-phase wind power gen- erators[J]. IEEE Transactions on Industrial Elec- tronics, 2024, 71(2): 1308-1318. [34] 张玉峰, 高文韬, 史乔宁, 等. 基于改进迭代田口法的双余度永磁同步电机优化设计[J]. 电工技术学报, 2023, 38(10): 2637-2647, 2685. Zhang Yufeng, Gao Wentao, Shi Qiaoning, et al.Optimization design of dual-redundancy permanent magnet synchronous motor based on improved iterations taguchi method[J]. Transactions of China Electrotech- nical Society, 2023, 38(10): 2637-2647, 2685. [35] Jiang Xuefeng, Huang Wenxin, Cao Ruiwu, et al.Electric drive system of dual-winding fault-tolerant permanent-magnet motor for aerospace appli- cations[J]. IEEE Transactions on Industrial Elec- tronics, 2015, 62(12): 7322-7330. [36] Jiang Xuefeng, Huang Wenxin, Cao Ruiwu, et al.Analysis of a dual-winding fault-tolerant permanent magnet machine drive for aerospace applications[J]. IEEE Transactions on Magnetics, 2015, 51(11): 1-4. [37] 王迎春, 王国欣, 赵帆, 等. 深层月壤钻取冗余绕组电机控制方法[J]. 深空探测学报, 2021, 8(3): 259-268. Wang Yingchun, Wang Guoxin, Zhao Fan, et al.Control method of redundant winding BLDC for deep lunar soil drilling[J]. Journal of Deep Space Exploration, 2021, 8(3): 259-268. [38] Bennett J W, Mecrow B C, Atkinson D J, et al.Safety-critical design of electromechanical actuation systems in commercial aircraft[J]. IET Electric Power Applications, 2011, 5(1): 37. [39] 蒋佳楠, 袁瑞林, 赵群弼, 等. 航空电反推用永磁同步电机余度设计与仿真分析[J]. 微电机, 2021, 54(8): 12-18. Jiang Jianan, Yuan Ruilin, Zhao Qunbi, et al.Redun- dancy design and simulation analysis of permanent magnet synchronous motor for aero-engine electric thrust reverser[J]. Micromotors, 2021, 54(8): 12-18. [40] Wu Lijian, Zhu Jiabei, Fang Youtong.A novel doubly-fed flux-switching permanent magnet machine with armature windings wound on both stator poles and rotor teeth[J]. IEEE Transactions on Industrial Electronics, 2020, 67(12): 10223-10232. [41] Wu Lijian, Zheng Yuting, Fang Youtong, et al.Novel fault-tolerant doubly fed flux reversal machine with armature windings wound on both stator and rotor teeth[J]. IEEE Transactions on Industrial Electronics, 2021, 68(6): 4780-4789. [42] Ming Guangqiang, Wu Lijian, Zhang Liu, et al.Comparative study of biased flux PM machines having different stator core segments and armature winding configurations[J]. IEEE Transactions on Transportation Electrification, 2022, 8(3): 3379-3389. [43] Jia Shaofeng, Sun Pengcheng, Feng Shuai, et al.Analysis and validation of dual armature winding magnetless machines with multi-torque component[J]. IEEE Transactions on Energy Conversion, 2023, 38(4): 2832-2842. [44] Jia Shaofeng, Dong Xiaozhuang, Liang Deliang, et al.Control strategy of different operation modes for a multiple torque component single air gap magnetless machine[J]. IEEE Transactions on Industry Appli- cations, 2023, 59(1): 726-735. [45] 孙玉华, 赵文祥, 吉敬华, 等. 高转矩性能多相组永磁电机及其关键技术综述[J]. 电工技术学报, 2023, 38(6): 1403-1420. Sun Yuhua, Zhao Wenxiang, Ji Jinghua, et al.Overview of multi-star multi-phase permanent magnet machines with high torque performance and its key technologies[J]. Transactions of China Electro- technical Society, 2023, 38(6): 1403-1420. [46] 刘国海, 孙汶超, 周华伟, 等. 五相永磁同步电机改进型无差拍直接转矩和磁链控制[J]. 电工技术学报, 2023, 38(24): 6658-6667. Liu Guohai, Sun Wenchao, Zhou Huawei, et al.An improved deadbeat direct torque and flux control strategy of five-phase permanent magnet synchronous motor[J]. Transactions of China Electrotechnical Society, 2023, 38(24): 6658-6667. [47] Gong Jinlin, Zahr H, Semail E, et al.Design considerations of five-phase machine with double p/3p polarity[J]. IEEE Transactions on Energy Conversion, 2019, 34(1): 12-24. [48] Wang Jin, Zhou Libing, Qu Ronghai.Harmonic current effect on torque density of a multiphase permanent magnet machine[C]//2011 International Conference on Electrical Machines and Systems, Beijing, China, 2011: 1-6. [49] Mecrow B C, Jack A G, Atkinson D J, et al.Design and testing of a four-phase fault-tolerant permanent- magnet machine for an engine fuel pump[J]. IEEE Transactions on Energy Conversion, 2004, 19(4): 671-678. [50] Xu Jinquan, Jin Wenbo, Guo Hong, et al.Design and analysis of a high speed wet-type fault tolerant permanent magnet motor considering oil frictional loss for aerospace electro-hydrostatic actuator appli- cation[J]. IEEE Transactions on Transportation Elec- trification, 2023, 10(3): 4667-4677. [51] Assoun I, Idkhajine L, Nahid-Mobarakeh B, et al.Wide-speed range sensorless control of five-phase PMSM drive under healthy and open phase fault conditions for aerospace applications[J]. Energies, 2022, 16(1): 279. [52] Villani M, Tursini M, Fabri G, et al.High reliability permanent magnet brushless motor drive for aircraft application[J]. IEEE Transactions on Industrial Electronics, 2012, 59(5): 2073-2081. [53] 沈宏源. 开绕组九相永磁同步电机谐波电流抑制策略研究[D]. 青岛: 青岛大学, 2023. Shen Hongyuan.Research on harmonic current suppression strategy of open-winding nine-phase permanent magnet synchronous motor[D]. Qingdao: Qingdao University, 2023. [54] 杨倩. 十五相感应电机绕组不同连接方式下的运行性能分析[D]. 沈阳: 沈阳工业大学, 2023. Yang Qian.Performance analysis of fifteen-phase induction motor windings under different connection modes. Shenyang: Shenyang University of Tech- nology, 2023. [55] 李晟. 基于气隙磁场定向的七相感应电机非正弦供电控制策略研究[D]. 杭州: 浙江大学, 2023. Li Sheng.Investigation of non-sinusoidal power supply control strategy for seven-phase induction machine based on air-gap flux orientation[D]. Hangzhou: Zhejiang University, 2023. [56] Li Sufei, Zhang Shen, Habetler T G, et al.Modeling, design optimization, and applications of switched reluctance machines-a review[J]. IEEE Transactions on Industry Applications, 2019, 55(3): 2660-2681. [57] Cheng Ming, Han Peng, Hua Wei.General airgap field modulation theory for electrical machines[J]. IEEE Transactions on Industrial Electronics, 2017, 64(8): 6063-6074. [58] Kim B, Lipo T A.Operation and design principles of a PM vernier motor[J]. IEEE Transactions on Industry Applications, 2014, 50(6): 3656-3663. [59] 佟文明, 王萍, 吴胜男, 等. 基于三维等效磁网络模型的混合励磁同步电机电磁特性分析[J]. 电工技术学报, 2023, 38(3): 692-702. Tong Wenming, Wang Ping, Wu Shengnan, et al.Electromagnetic performance analysis of a hybrid excitation synchronous machine based on 3D equivalent magnetic network[J]. Transactions of China Electrotechnical Society, 2023, 38(3): 692-702. [60] 张卓然, 王东, 花为. 混合励磁电机结构原理, 设计与运行控制技术综述及展望[J]. 中国电机工程学报, 2020, 40(24): 7834-7850. Zhang Zhuoran, Wang Dong, Hua wei. Overview of configuration, design and control technology of hybrid excitation machines[J]. Proceedings of the CSEE, 2020, 40(24): 7834-7850. [61] Cai Shun, Zhu Z Q, Mipo J C, et al.A novel parallel hybrid excited machine with enhanced flux regulation capability[J]. IEEE Transactions on Energy Con- version, 2019, 34(4): 1938-1949. [62] Li Xianglin, Shen Fawen, Yu Shiyang, et al.Flux- regulation principle and performance analysis of a novel axial partitioned stator hybrid-excitation flux- switching machine using parallel magnetic circuit[J]. IEEE Transactions on Industrial Electronics, 2021, 68(8): 6560-6573. [63] Wei Fangrui, Zhu Z Q, Yan Luocheng, et al.Investigation of stator/rotor pole number combin- ations and PM numbers in consequent-pole hybrid excited flux reversal machine[J]. IEEE Transactions on Energy Conversion, 2022, 37(3): 2092-2106. [64] 吴胜男, 庞先文, 佟文明, 等. 模块化定子混合励磁同步电机磁网络建模与分析[J]. 电机与控制学报, 2023, 27(12): 95-104. Wu Shengnan, Pang Xianwen, Tong Wenming, et al.Modeling and analysis of magnetic network of modular stator hybrid excitation synchronous motors[J]. Electric Machines and Control, 2023, 27(12): 95-104. [65] Jiang Tingting, Zhao Wenxiang, Xu Liang, et al.A novel parallel hybrid excitation field modulated machine with efficient utilization of multiworking harmonics[J]. IEEE Transactions on Industrial Electronics, 2022, 69(2): 1177-1188. [66] Niu Shuangxia, Ho S L, Fu W N.A novel stator and rotor dual PM vernier motor with space vector pulse width modulation[J]. IEEE Transactions on Magnetics, 2014, 50(2): 7019904. [67] Wang Qingsong, Niu Shuangxia, Yang Lin.Design optimization and comparative study of novel dual-PM excited machines[J]. IEEE Transactions on Industrial Electronics, 2017, 64(12): 9924-9933. [68] Xie Kangfu, Li Dawei, Qu Ronghai, et al.A novel permanent magnet vernier machine with halbach array magnets in stator slot opening[J]. IEEE Transactions on Magnetics, 2017, 53(6): 7207005. [69] Shi Yujun, Jian Linni, Ching T W.Quantitative identification of airgap flux density harmonics contributing to back EMF in dual-permanent- magnet-excited machine[J]. IEEE Transactions on Magnetics, 2022, 58(2): 8100705. [70] Shi Yujun, Jian Linni.A novel dual-permanent- magnet-excited machine with flux strengthening effect for low-speed large-torque applications[J]. Energies, 2018, 11(1): 153. [71] Wang Qingsong, Niu Shuangxia.A novel hybrid- excited dual-PM machine with bidirectional flux modulation[J]. IEEE Transactions on Energy Con- version, 2017, 32(2): 424-435. [72] Jia Shaofeng, Yan Kuankuan, Liang Deliang, et al.A novel DC-biased current dual PM vernier machine[J]. IEEE Transactions on Industry Applications, 2021, 57(5): 4595-4605. [73] Zhao Xing, Niu Shuangxia, Zhang Xiaodong, et al.Flux-modulated relieving-DC-saturation hybrid relu- ctance machine with synthetic slot-PM excitation for electric vehicle In-wheel propulsion[J]. IEEE Transa- ctions on Industrial Electronics, 2021, 68(7): 6075-6086. [74] Zhao Xing, Niu Shuangxia, Fu Weinong.Sensitivity analysis and design optimization of a new hybrid- excited dual-PM generator with relieving-DC- saturation structure for stand-alone wind power generation[J]. IEEE Transactions on Magnetics, 2020, 56(1): 7504105. [75] 申永鹏, 刘迪, 梁伟华, 等. 三相桥式逆变电路电流检测方法综述[J]. 电工技术学报, 2023, 38(2): 465-484. Shen Yongpeng, Liu Di, Liang Weihua, et al.Review of current detection methods for three-phase bridge inverter circuits[J]. Transactions of China Electro- technical Society, 2023, 38(2): 465-484. [76] 陈彦丞, 王学庆, 贺明智, 等. 基于混合逆变器的开绕组永磁同步电机驱动系统简化模型预测控制[J]. 电机与控制学报, 2023, 27(1): 120-127. Chen Yancheng, Wang Xueqing, He Mingzhi, et al.Simplified model predictive control for hybrid inverter- based open-end winding PMSM driving system[J]. Electric Machines and Control, 2023, 27(1): 120-127. [77] Dong Zhiping, Wen Hao, Song Zaixin, et al.3-D SVM for three-phase open-end winding drives with common DC bus[J]. IEEE Transactions on Power Electronics, 2023, 38(8): 9340-9346. [78] Wei Jiadan, Kong Xianghao, Hong Ying, et al.Integrated control strategy for distortion current elimination of fault-tolerant open-end winding per- manent magnet synchronous machine with topology reconfiguration[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2023, 11(2): 1397-1406. [79] Tang Haoyue, Li Weili, Li Jinyang, et al.Calculation and analysis of the electromagnetic field and temperature field of the PMSM based on fault-tolerant control of four-leg inverters[J]. IEEE Transactions on Energy Conversion, 2020, 35(4): 2141-2151. [80] 蔡春伟, 郭玉兴, 安普风, 等. 三相四线制逆变器中性点电压脉动抑制新型拓扑[J]. 电机与控制学报, 2018, 22(2): 49-56. Cai Chunwei, Guo Yuxing, An Pufeng, et al.A neutral point voltage ripple inhibition topology for three-phase four-wire inverter[J]. Electric Machines and Control, 2018, 22(2): 49-56. [81] Mirafzal B.Survey of fault-tolerance techniques for three-phase voltage source inverters[J]. IEEE Transa- ctions on Industrial Electronics, 2014, 61(10): 5192-5202. [82] Guo Hong, Xu Jinquan, Chen Y H.Robust control of fault-tolerant permanent-magnet synchronous motor for aerospace application with guaranteed fault switch process[J]. IEEE Transactions on Industrial Electro- nics, 2015, 62(12): 7309-7321. [83] Guo Hong, Xu Jinquan.Fault tolerant control with torque limitation based on fault mode for ten-phase permanent magnet synchronous motor[J]. Chinese Journal of Aeronautics, 2015, 28(5): 1464-1475. [84] 刘自程, 郑泽东, 彭凌, 等. 船舶电力推进中十五相感应电机同轴运行及容错控制策略[J]. 电工技术学报, 2014, 29(3): 65-74. Liu Zicheng, Zheng Zedong, Peng Ling, et al.Fixed joint double fifteen-phase induction motor control and fault-tolerant control in ship propulsion system[J]. Transactions of China Electrotechnical Society, 2014, 29(3): 65-74. [85] 赵圣杰, 夏加宽. 并列双转子混合励磁同步电机振动分析[J]. 船电技术, 2022, 42(8): 22-26. Zhao Shengjie, Xia Jiakuan.Vibration analysis of hybrid excitation synchronous motor with electrically excited rotor[J]. Marine Electric & Electronic Engineering, 2022, 42(8): 22-26. [86] Zhu Z Q, Cai S.Hybrid excited permanent magnet machines for electric and hybrid electric vehicles[J]. CES Transactions on Electrical Machines and Systems, 2019, 3(3): 233-247. [87] 于立, 吴咏梅, 孙林楠, 等. 航空并列式混合励磁无刷直流发电机短路特性研究[J]. 中国电机工程学报, 2021, 41(14): 4994-5003. Yu Li, Wu Yongmei, Sun Linnan, et al.Research on short-circuit characteristics of structure-parallel hybrid excitation brushless DC generator for aircraft electrical power system application[J]. Proceedings of the CSEE, 2021, 41(14): 4994-5003. [88] 赵萌. 多盘式开绕组定子无铁心轴向磁通永磁同步容错电机研究[D]. 武汉: 湖北工业大学, 2021. Zhao Meng.Study of fault-tolerant axial flux per- manent magnet synchronous motor with multi-disc type coreless open-end winding. Wuhan: Hubei University of Technology, 2021. [89] Si Binqiang, Fu Qiang, Wang Tao, et al.Twofold fail- work remedy for reconfigurable driver and windings of four-phase permanent magnet fault-tolerant motor system[J]. IEEE Transactions on Power Electronics, 2019, 34(8): 7763-7774. [90] Mavila P C, Rajeevan P P.A five-level torque controller based DTC scheme for open-end winding five-phase IM drives with single DC source and auxiliary plane harmonic elimination[J]. IEEE Transa- ctions on Industry Applications, 2022, 58(2): 2063-2074. [91] Ding Wen, Hu Yanfang, Wu Luming.Investigation and experimental test of fault-tolerant operation of a mutually coupled dual three-phase SRM drive under faulty conditions[J]. IEEE Transactions on Power Electronics, 2015, 30(12): 6857-6872. [92] Jia Shaofeng, Sun Pengcheng, Feng Shuai, et al.Analysis and experiment of a dual stator/rotor PM and winding flux modulated PM machine[J]. IEEE Transactions on Industry Applications, 2023, 59(2): 1659-1669. [93] Jiang Xuefeng, Li Qiang, Huang Wenxin, et al.A dual-winding fault-tolerant motor drive system based on the redundancy bridge arm[J]. IEEE Transactions on Industrial Electronics, 2019, 66(1): 654-662. [94] Gan Chun, Li Xue, Yu Zhiyue, et al.Modular seven- leg switched reluctance motor drive with flexible winding configuration and fault-tolerant capability[J]. IEEE Transactions on Transportation Electrification, 2023, 9(2): 2711-2722. [95] Song B K, Kim J H, Hwang K Y, et al.Electro- mechanical characteristics of dual-winding motor according to winding arrangement for brake systems in highly automated driving vehicles[J]. IEEE Transa- ctions on Vehicular Technology, 2023, 72(10): 12524-12539. |
|
|
|