|
|
Single Terminal Protection Scheme for Flexible DC Transmission Lines Based on Equivalent Fault Section |
Zheng Tao1, Li Zixiao1, Chen Yunfei1, Song Xiangyan2 |
1. State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources North China Electric Power University Beijing 102206 China; 2. Tangshan Power Supply Company State Grid Jibei Electric Power Company Tangshan 063000 China |
|
|
Abstract Flexible HVDC transmission systems have demonstrated significant advantages in addressing the challenges of large-scale and distant renewable energy integration, representing a key trend in the future transformation and development of power systems. However, flexible HVDC transmission systems comprise numerous power electronic devices, exhibiting characteristics such as low inertia and weak damping, thereby imposing higher demands on the speed of fault isolation and protection. Currently, to minimize the economic investments and enhance the grid dynamic performance, limiting reactors are often centrally installed at the converter station exits, resulting in a lack of clear boundary elements between DC transmission lines. This installation method leads to the possibility that existing protection schemes based on characteristics of line boundary elements may no longer be applicable. On the contrary, traveling-wave-based protection, with its inherent ultra-high speed and independence from line boundary elements, emerges as an effective approach to address the challenges of applying single ended transient protection schemes in flexible HVDC transmission lines under weak boundary conditions or no boundary conditions. However, existing traveling-wave-based single ended protection schemes often fail to effectively differentiate between faults occurring inside and outside the protected section, leading to undersized protection and difficulty in protecting the entire length of the line. Moreover, traveling-wave-based protection is susceptible to device sampling rates, especially when faults occur at the near end or remote end of the line, resulting in frequent wave reflections between the fault point and the busbar, which may reduce protection reliability. To address these issues, this paper first analyzes the propagation paths of reverse current waves during faults at different locations along the line, deriving the relationship between the number of same-polarity waves detected at the relay location before the arrival of the first reverse-polarity wave from the fault location. Building upon this analysis, considering the phenomenon of "wave leakage" due to limited sampling rates during near-end or remote-end faults and the influence of line length, the relationship between the number of the same-polarity waves detected at the relay location is further derived. Based on this analysis and introducing the concept of "equivalent fault sections" to enhance the difference between zero mode traveling wave arrival time and line mode traveling wave arrival time between internal faults and external faults, a single ended protection scheme for flexible HVDC transmission lines based on equivalent fault sections is proposed. Finally, this paper validates the feasibility and effectiveness of the proposed protection scheme through extensive simulation experiments using the PSCAD/EMTDC simulation platform for multi-terminal flexible HVDC transmission systems. Simulation results demonstrate that the proposed scheme reliably addresses the challenge of protecting the entire length of the line, exhibits good transient resistance and noise interference resistance, even under scenarios with weakened or absent boundary elements. Furthermore, by considering the integration of wave polarity and time difference information to mitigate the effects of "wave leakage" due to limited sampling rates during near-end or far-end faults and the influence of line length, the proposed scheme exhibits a certain degree of fault tolerance.
|
Received: 17 January 2024
|
|
|
|
|
[1] Xiang Wang, Yang Saizhao, Adam G P, et al.DC fault protection algorithms of MMC-HVDC grids: fault analysis, methodologies, experimental validations, and future trends[J]. IEEE Transactions on Power Electronics, 2021, 36(10): 11245-11264. [2] 刘欣, 袁易, 王利桐, 等. 柔性直流输电系统三端口混合参数建模及其稳定性分析[J]. 电工技术学报, 2024, 39(16): 4968-4984. Liu Xin, Yuan Yi, Wang Litong, et al.Three-port hybrid parameter modeling and stability analysis of MMC-HVDC system[J]. Transactions of China Electrotechnical Society, 2024, 39(16): 4968-4984. [3] 饶宏, 周月宾, 李巍巍, 等. 柔性直流输电技术的工程应用和发展展望[J]. 电力系统自动化, 2023, 47(1): 1-11. Rao Hong, Zhou Yuebin, Li Weiwei, et al.Engineering application and development prospect of VSC-HVDC transmission technology[J]. Automation of Electric Power Systems, 2023, 47(1): 1-11. [4] 雷顺广, 束洪春, 李志民. 基于桥臂功率特征的全-半混合型柔性直流输电线路保护[J]. 电工技术学报, 2023, 38(13): 3563-3575. Lei Shunguang, Shu Hongchun, Li Zhimin.Full-half bridge hybrid VSC-HVDC transmission line protection method based on power characteristics of bridge arms[J]. Transactions of China Electrotechnical Society, 2023, 38(13): 3563-3575. [5] 郭贤珊, 周杨, 梅念, 等. 张北柔直电网的构建与特性分析[J]. 电网技术, 2018, 42(11): 3698-3707. Guo Xianshan, Zhou Yang, Mei Nian, et al.Construction and characteristic analysis of Zhangbei flexible DC grid[J]. Power System Technology, 2018, 42(11): 3698-3707. [6] 郑涛, 李紫肖, 陈颖. 基于换流站不同出线低频暂态能量比值的多端柔直电网线路保护方案[J]. 电力系统保护与控制, 2023, 51(24): 1-12. Zheng Tao, Li Zixiao, Chen Ying.Protection scheme for a multi-terminal flexible DC grid line based on low frequency transient energy ratios of different outgoing lines at the converter station[J]. Power System Protection and Control, 2023, 51(24): 1-12. [7] 乔立华, 陶然, 宋国兵, 等. 直流线路边界特性保护综述[J]. 电力系统保护与控制, 2019, 47(19): 179-186. Qiao Lihua, Tao Ran, Song Guobing, et al.A summary of the boundary characteristics used in DC system relay protection[J]. Power System Protection and Control, 2019, 47(19): 179-186. [8] Liu Zhen, Gao Houlei, Luo Sibei, et al.A fast boundary protection for an AC transmission line connected to an LCC-HVDC inverter station[J]. Protection and Control of Modern Power Systems, 2020, 5(4): 29. [9] Descloux J, Curis J B, Raison B.Protection algorithm based on differential voltage measurement for MTDC grids[C]//12th IET International Conference on Developments in Power System Protection (DPSP 2014), Copenhagen, Denmark, 2014: 1-5. [10] 李斌, 何佳伟, 李晔, 等. 基于边界特性的多端柔性直流配电系统单端量保护方案[J]. 中国电机工程学报, 2016, 36(21): 5741-5749, 6016. Li Bin, He Jiawei, Li Ye, et al.Single-ended protection scheme based on boundary characteristic for the multi-terminal VSC-based DC distribution system[J]. Proceedings of the CSEE, 2016, 36(21): 5741-5749, 6016. [11] 杨亚宇, 邰能灵, 谢卫, 等. 利用单端边界能量的直流输电线路全线速动保护[J]. 电工技术学报, 2023, 38(9): 2403-2417. Yang Yayu, Tai Nengling, Xie Wei, et al.A whole-line fast protection scheme for HVDC transmission line based on single-ended boundary energy[J]. Transactions of China Electrotechnical Society, 2023, 38(9): 2403-2417. [12] Li Bin, Li Ye, He Jiawei, et al.A novel single-ended transient-voltage-based protection strategy for flexible DC grid[J]. IEEE Transactions on Power Delivery, 2019, 34(5): 1925-1937. [13] 张晨浩, 宋国兵, 董新洲. 利用故障电流首行波拟合的柔性直流输电线路单端行波保护原理[J]. 中国电机工程学报, 2021, 41(8): 2651-2661. Zhang Chenhao, Song Guobing, Dong Xinzhou.Principle of non-unit traveling wave protection for VSC-HVDC transmission line using fault current initial traveling wave fitting[J]. Proceedings of the CSEE, 2021, 41(8): 2651-2661. [14] 胡仙清, 童宁, 林湘宁, 等. 超长距离HVDC线路高灵敏性主保护[J]. 中国电机工程学报, 2020, 40(4): 1172-1184, 1409. Hu Xianqing, Tong Ning, Lin Xiangning, et al.High sensitive main protection for extra-long HVDC line[J]. Proceedings of the CSEE, 2020, 40(4): 1172-1184, 1409. [15] 童宁, 林湘宁, 张雪松, 等. 不依赖于边界元件的架空型多端柔直电网就地测距式接地保护原理[J]. 中国电机工程学报, 2019, 39(7): 2049-2060. Tong Ning, Lin Xiangning, Zhang Xuesong, et al.Fault location based single-ended protection strategy for overhead VSC-MTDC independent on boundary component[J]. Proceedings of the CSEE, 2019, 39(7): 2049-2060. [16] 徐政. 柔性直流输电系统[M]. 2版. 北京: 机械工业出版社, 2017. [17] Xue Yinglin, Xu Zheng.On the bipolar MMC-HVDC topology suitable for bulk power overhead line transmission: configuration, control, and DC fault analysis[J]. IEEE Transactions on Power Delivery, 2014, 29(6): 2420-2429. [18] 薛英林, 徐政, 张哲任, 等. MMC-HVDC换流器阻抗频率特性分析[J]. 中国电机工程学报, 2014, 34(24): 4040-4048. Xue Yinglin, Xu Zheng, Zhang Zheren, et al.Analysis on converter impedance-frequency characteristics of the MMC-HVDC system[J]. Proceedings of the CSEE, 2014, 34(24): 4040-4048. [19] 李晔, 李斌, 刘晓明, 等. 基于反向行波幅值比的对称单极柔性直流系统行波方向保护[J]. 电工技术学报, 2023, 38(9): 2418-2434. Li Ye, Li Bin, Liu Xiaoming, et al.The direction protection based on the amplitude ratio of the backward traveling wave for the symmetrical monopole flexible DC system[J]. Transactions of China Electrotechnical Society, 2023, 38(9): 2418-2434. [20] 李爱民, 蔡泽祥, 李晓华. 直流线路行波传播特性的解析[J]. 中国电机工程学报, 2010, 30(25): 94-100. Li Aimin, Cai Zexiang, Li Xiaohua.Study on the propagation characteristics of traveling waves in HVDC transmission lines on the basis of analytical method[J]. Proceedings of the CSEE, 2010, 30(25): 94-100. [21] 王鹤, 胡倩慈, 李筱婧, 等. 计及行波折反射的柔性直流电网故障限流器参数优化[J]. 电力系统保护与控制, 2022, 50(4): 54-63. Wang He, Hu Qianci, Li Xiaojing, et al.Parameter optimization of a fault current limiter in a flexible DC power grid considering refraction and reflection of a traveling wave[J]. Power System Protection and Control, 2022, 50(4): 54-63. [22] 戴志辉, 牛宝仪, 李铁成, 等. 基于控保协同的三端混合直流输电系统线路保护[J]. 电工技术学报, 2025, 40(1): 108-121. Dai Zhihui, Niu Baoyi, Li Tiecheng, et al.Line protection method of three-terminal hybrid DC transmission system based on control and protection coordination[J]. Transactions of China Electro-technical Society, 2025, 40(1): 108-121. [23] 陈田田, 李银红. 基于电压折射波幅值正负差异的柔性直流电网两段式行波保护[J]. 电力系统自动化, 2022, 46(3): 129-136. Chen Tiantian, Li Yinhong.Two-section traveling wave protection for flexible DC grid based on positive and negative difference of voltage refractive wave amplitude[J]. Automation of Electric Power Systems, 2022, 46(3): 129-136. [24] 束洪春, 邵宗学, 旷宇. 基于改进型限流混合式直流断路器的开断时序优化研究[J]. 电工技术学报, 2023, 38(22): 6176-6187. Shu Hongchun, Shao Zongxue, Kuang Yu.Research of opening timing optimization based on improved current-limiting hybrid DC circuit breaker[J]. Transactions of China Electrotechnical Society, 2023, 38(22): 6176-6187. [25] 束洪春, 代月, 安娜, 等. 基于线性回归的柔性直流电网纵联保护方法[J]. 电工技术学报, 2022, 37(13): 3213-3226, 3288. Shu Hongchun, Dai Yue, An Na, et al.Pilot protection method of flexible DC grid based on linear regression[J]. Transactions of China Electrotechnical Society, 2022, 37(13): 3213-3226, 3288. [26] 郑涛, 宋祥艳. 适用于多端直流电网的电压极性比较式行波保护方案[J]. 电网技术, 2022, 46(12): 4690-4699. Zheng Tao, Song Xiangyan.Traveling wave protection scheme of voltage polarity comparison formula for multi-terminal DC power network[J]. Power System Technology, 2022, 46(12): 4690-4699. [27] 束洪春. 行波暂态量分析与故障测距[M]. 北京: 科学出版社, 2016. [28] 束洪春, 刘力滔, 唐玉涛, 等. 基于行波暂态能量的半波长输电线路高灵敏增强型纵联保护方案[J]. 电工技术学报, 2022, 37(24): 6372-6387. Shu Hongchun, Liu Litao, Tang Yutao, et al.Highly sensitive enhanced pilot protection of half-wavelength transmission line based on directional traveling wave energy[J]. Transactions of China Electrotechnical Society, 2022, 37(24): 6372-6387. [29] 林骏捷, 林佳壕, 郭谋发. 基于多暂态特征量聚类的配电网接地故障区段定位方法[J]. 电气技术, 2023, 24(5): 16-22. Lin Junjie, Lin Jiahao, Guo Moufa.A method of grounding fault location in distribution network based on multi-transient characteristic cluster[J]. Electrical Engineering, 2023, 24(5): 16-22. [30] 艾斌, 吕艳萍. 基于小波模极大值极性的行波信号识别[J]. 电网技术, 2003, 27(5): 55-57, 71. Ai Bin, Lü Yanping.Traveling wave signal identification based on wavelet polarity of modulus maxima[J]. Power System Technology, 2003, 27(5): 55-57, 71. [31] 董长虹, 高志, 余啸海. Matlab小波分析工具箱原理与应用[M]. 北京: 国防工业出版社, 2004. [32] Dong Xinzhou, Ge Yaozhong, He Jiali.Surge impedance relay[J]. IEEE Transactions on Power Delivery, 2005, 20(2): 1247-1256. |
|
|
|