|
|
Compatibility between C6F12O-N2 Gas Mixture and Sealing Material Nitrile Butadiene Rubber |
Lan Jiaqi1, Tian Shuangshuang1, Li Xiaohan1, Rao Xiajin2, Zhang Xiaolong3 |
1. Hubei Engineering Research Center for Safety Monitoring of New Energy and Power Grid Equipment Hubei University of Technology Wuhan 430068 China; 2. Electric Power Research Institute of Guangxi Power Grid Co. Ltd Nanning 530000 China; 3. Maintenance Company of State Grid Chongqing Electric Power Company Chongqing 400039 China |
|
|
Abstract The new environment-friendly insulating medium C6F12O has good potential to apply in medium and low voltage equipment due to its excellent environmental properties and good insulation performance. In order to evaluate the reliability of long-term safe and stable of C6F12O/N2 gas mixture in the equipment, it is necessary to study the compatibility between C6F12O/N2 gas mixture and sealing rubber. In this paper, the compatibility of C6F12O/N2 gas mixture with NBR is studied by using thermal acceleration method. The composition products of gas mixture and the morphology properties of nitrile Butadiene Rubber (NBR) are revealed based on fourier transform infrared spectrometer and scanning electron microscope respectively. Meanwhile, the formation path of gas decomposition products is simulated based on density functional theory, and the interaction process between NBR and C6F12O molecules is calculated. It is found that NBR rubber is incompatible with the C6F12O/N2 gas mixture at temperatures higher than 90℃. There exists chemical reactions between NBR and C6F12O/N2 gas mixture, resulting in the generation of gaseous byproducts including C3F6, NF3 and CS2 and the precipitation of while crystal particles on the surface of NBR. The theoretical calculation also shows that the increase of temperature can promote the decomposition of NBR molecules, and the gas-solid reaction between C6F12O and NBR tends to form new substances. The study results can provide important theoretical and technical guidance for engineering application of the C6F12O/N2 gas mixture.
|
Received: 01 December 2020
|
|
|
|
|
[1] 张晓星, 田双双, 肖淞, 等. SF6替代气体研究现状综述[J]. 电工技术学报, 2018, 33(12): 2883-2893. Zhang Xiaoxing, Tian Shuangshuang, Xiao Song, et al.A review study of SF6 substitute gases[J]. Transactions of China Electrotechnical Society, 2018, 33(12): 2883-2893. [2] Zhang Xiaoxing, Tian Yuan, Cui Zhaolun, et al.Plasma-assisted abatement of SF6 in a packed bed plasma reactor: understanding the effect of gas composition[J]. Plasma Science and Technology, 2020, 22(5): 97-106. [3] Owens J G.Greenhouse gas emission reductions through use of a sustainable alternative to SF6[C]//IEEE Electrical Insulation Conference (EIC), Montreal, QC, Canada, 2016: 535-538. [4] 陈琪, 张晓星, 李祎, 等. 环保绝缘介质C4F7N/CO2/O2混合气体的放电分解特性[J]. 电工技术学报, 2020, 35(1): 80-87. Chen Qi, Zhang Xiaoxing, Li Yi, et al.The discharge decomposition characteristics of environmental-friendly insulating medium C4F7N/CO2/O2 gas mixture[J]. Transactions of China Electrotechnical Society, 2020, 35(1): 80-87. [5] 颜湘莲, 郑宇, 黄河, 等. C4F7N/CO2混合气体对局部不均匀电场的敏感特性[J]. 电工技术学报, 2020, 35(1): 43-51. Yan Xianglian, Zheng Yu, Huang He, et al.Sensitivity of C4F7N/CO2 gas mixture to partial inhomogeneous electric field[J]. Transactions of China Electrotechnical Society, 2020, 35(1): 43-51. [6] 张震, 林莘, 余伟成, 等. C4F7N/CO2和C4F7N/N2混体气体热力学物性参数计算[J]. 高电压技术, 2020, 46(1): 250-256. Zhang Zhen, Lin Xin, Yu Weicheng, et al.Thermodynamic calculation of physical properties of C4F7N/CO2 and C4F7N/N2[J]. High Voltage Engineering, 2020, 46(1): 250-256. [7] Zhang Xiaoxing, Li Yi, Xiao Song, et al.Theoretical study of the decomposition mechanism of environmentally friendly insulating medium C3F7CN in the presence of H2O in a discharge[J]. Journal of Physics D: Applied Physics, 2017, 50(32): 5201-5210. [8] Xiao Song, Li Yi, Zhang Xiaoxing, et al.Effects of micro-water on decomposition of the environment-friendly insulating medium C5F10O[J]. AIP Advances, 2017, 7(6): 065017. [9] 王小华, 傅熊雄, 韩国辉, 等. C5F10O/CO2混合气的缘性能[J]. 高电压技术, 2017, 43(3): 33-38. Wang Xiaohua, Fu Xiongxiong, Han Guohui, et al.Insulation performance of C5F10O/CO2 gas mixture[J]. High Voltage Engineering, 2017, 43(3): 33-38. [10] 赵明月, 韩冬, 韩先才, 等. C6F12O/N2与C6F12O/空气混合气体的电晕放电分解产物分析[J]. 电工电能新技术, 2018, 37(11): 1-8. Zhao Mingyue, Han Dong, Han Xiancai, et al.Decomposition by-products of C6F12O/N2 and C6F12O/air mixed gases under AC 50Hz corona discharge[J]. Advanced Technology of Electrical Engineering and Energy, 2018, 37(11):1-8 [11] 田双双, 张晓星, 肖淞, 等. 工频交流电压下C6F12O与N2混合气体的击穿特性和分解特性[J]. 中国电机工程学报, 2018, 38(10): 3125-3132, 3165. Tian Shuangshuang, Zhang Xiaoxing, Xiao Song, et al.Breakdown characteristics and decomposition characteristics of C6F12O and N2 mixed gas under AC voltage[J]. Proceedings of the CSEE, 2018, 38(10): 3125-3132, 3165. [12] Zhang Boya, Zhang Ziyue, Li Xingwen, et al.The compatibility between environmentally friendly insulation gas C4F7N and α-Al2O3 (0001) surface: theoretical and experimental insights[J]. Applied Surface Science, 2020, 536:147836. [13] 郑哲宇, 李涵, 周文俊, 等. 环保绝缘气体C3F7CN与密封材料三元乙丙橡胶的相容性研究[J]. 高电压技术, 2019, 45(1): 335-341. Zhen Zheyu, Li han, Zhou Wenjun, et al. Compatibility of eco-friendly insulating medium C3F7CN and sealing material EPDM[J]. High Voltage Engineering, 2019, 45(1): 335-341. [14] Li Yi, Zhang Xiaoxing, Tian Shuangshuang, et al.Insight into the compatibility between C6F12O and metal materials: experiment and theory[J]. IEEE Access, 2018, 6: 58154-58160. [15] 袁瑞君, 李涵, 郑哲宇, 等. 气体绝缘输电线路用C3F7CN/CO2混合气体与环氧树脂相容性试验[J]. 电工技术学报, 2020, 35(1): 70-79. Yuan Ruijun, Li Han, Zhen Zheyu, et al.Compatibility test of C3F7CN/CO2 mixture with epoxy resin for gas insulated transmission line[J]. Transactions of China Electrotechnical Society, 2020, 35(1): 70-79. [16] 唐炬, 雷志城, 万兆丰, 等. 环保型C6F12O气体绝缘介质过热分解的反应热力学特性[J]. 中国电机工程学报, 2019, 39(17): 5257-5264. Tang Ju, Lei Zhicheng, Wan Zhaofeng, et al.Thermodynamic characteristics of thermal decomposition reaction of environmental friendly C6F12O gas insulating medium[J]. Proceedings of the CSEE, 2019, 39(17): 5257-5264. [17] Lide D R.CRC Handbook of Chemistry and Physics[M]. 80th ed. New York: CRC Press, 1999. [18] Zhang Boya, Zhang Ziyue, Xiong Jiayu, et al. Thermal and electrical decomposition products of C5F10O and their compatibility with Cu (111) andAl (111) surfaces[J]. Applied Surface Science, 2020, 513: 145882-. [19] Xiong Jiayu, Zhang Boya, Zhang Ziyue, et al.The adsorption properties of environmentally friendly insulation gas C4F7N on Zn (0001) and ZnO(10 1 0) surfaces: a first-principles study[J]. Applied Surface Science, 2019, 509:144854. [20] 张晓星, 任江波, 肖鹏, 等. 检测SF6气体局部放电的多壁碳纳米管薄膜传感器[J]. 中国电机工程学报, 2009, 29(16): 114-118. Zhang Xiaoxing, Ren Jiangbo, Xiao Peng, et al.Multi walled carbon nanotube film sensor for detecting partial discharge of SF6 gas[J]. Proceedings of the CSEE, 2009, 29(16): 114-118. [21] 王晓静, 张晓星, 孙才新, 等. 大气压介质阻挡放电对多壁碳纳米管表面改性及其气敏特性[J]. 高电压技术. 2012, 38(1): 223-228. Wang Xiaojing, Zhang Xiaoxing, Sun Caixing, et al.Surface modification and gas sensing properties of multi walled carbon nanotubes by dielectric barrier discharge at atmospheric pressure[J]. High Voltage Engineering, 2012, 38(1): 223-228. [22] 张晓星, 张锦斌, 唐炬, 等. 镍掺杂碳纳米管传感器检测变压器油中溶解气体的气敏性[J]. 中国电机工程学报. 2011, 31(4): 119-124. Zhang Xiaoxing, Zhang Jinbing, Tang Ju, et al.Gas sensitivity of dissolved gas in transformer oil detected by nickel doped carbon nanotubes sensor[J]. Proceedings of the CSEE, 2011, 31(4): 119-124. [23] 张晓星, 孟凡生, 任江波, 等. 硼掺杂单壁碳纳米管检测SF6气体局部放电仿真[J]. 高电压技术, 2011, 37(7): 1689-1694. Zhang Xiaoxing, Meng Fansheng, Ren Jiangbo, et al.Simulation of partial discharge of SF6 gas detected by boron doped single wall carbon nanotubes[J]. High Voltage Engineering, 2011, 37(7): 1689-1694. [24] 张晓星, 吴法清, 铁静, 等. 二氧化钛纳米管气体传感器检测SF6的气体分解组分SO2F2的气敏特性[J]. 高电压技术, 2014, 40(11): 3396-3402. Zhang Xiaoxing, Wu Faqing, Tie Jing, et al.Gas sensing characteristics of TiO2 nanotube gas sensor for detection of SO2F2 in SF6[J]. High Voltage Engineering, 2014, 40(11): 3396-3402. |
|
|
|