|
|
Experimental Study on the Influence of Parameter Change of Square Rib on Flow Boiling Heat Transfer |
Shi Yitao1, Cao Rui1, Ruan Lin1,2 |
1. Institute of Electrical Engineering Chinese Academy of Sciences Beijing 100190 China; 2. University of Chinese Academy of Sciences Beijing 100049 China |
|
|
Abstract To explore the influence of the change of rib structure parameters on the flow boiling heat transfer, a visual experimental study is carried out on the flow boiling heat transfer and two-phase pressure drop characteristics in the surface-mounted rib array liquid box. A liquid box with a cross-sectional area of 180 mm×20mm is used as the research object that was a visualized single-sided heating narrow rectangular structure. Seven kinds of rib array backplates with different rib heights, rib spacing, and rib cross-section were selected to study the flow boiling heat transfer characteristics in the liquid box. Through the visual observation of the boiling flow in the liquid box, it is found that The ribs significantly enhance the flow boiling heat transfer in the liquid box. Moreover, the study of the effect of different rib array parameters on boiling heat transfer found that with the change of rib array height and rib array spacing, the boiling heat transfer effect has an optimal value, and the boiling heat transfer coefficient increases as the cross-sectional area of the single rib increases. The flux-resistance pressure drop circulation characteristics in the liquid box are sensitive to the variation of the rib parameters, and the curves show the phenomenon of drifting to the left or the right in different degrees of drift with the changes of the rib array parameters. The research results provide an important basis for the engineering application of the square rib structure in the surface-mounted evaporative cooling system.
|
Received: 03 February 2021
|
|
|
|
|
[1] 曾正, 欧开鸿, 吴义伯, 等. 车用双面散热功率模块的热-力协同设计[J]. 电工技术学报, 2020, 35(14): 3050-3064. Zeng Zheng, Ou Kaihong, Wu Yibo, et al.Thermo-mechanical co-design of double sided cooling power module for electric vehicle application[J]. Transactions of China Electrotechnical Society, 2020, 35(14): 3050-3064. [2] 刘直, 阮琳. 气液固三相绝缘体系数学物理模型的理论分析与实验验证[J]. 电工技术学报, 2018, 33(9): 2097-2104. Liu Zhi, Ruan Lin.Theoretical analysis and experimental verification on mathematical and physical model of gas-liquid-solid insulation system[J]. Transactions of China Electrotechnical Society, 2018, 33(9): 2097-2104. [3] 阮琳, 陈金秀, 顾国彪. 冷却方式对抽水蓄能机组定子绝缘特性的影响[J]. 电工技术学报, 2017, 32(14): 246-251. Ruan Lin, Chen Jinxiu, Gu Guobiao.Different influence of cooling method to stator bar insulation characteristics in pumped storage units[J]. Transactions of China Electrotechnical Society, 2017, 32(14): 246-251. [4] 温英科, 阮琳. 全浸式液汽相变冷却方式贴片电阻失效机理[J]. 电工技术学报, 2019, 34(24): 5144-5150. Wen Yingke, Ruan Lin.Failure mechanism of film resistors under fully-immersed liquid-vapor phase change cooling technology[J]. Transactions of China Electrotechnical Society, 2019, 34(24): 5144-5150. [5] 顾国彪, 阮琳, 刘斐辉, 等. 蒸发冷却技术的发展, 应用和展望[J]. 电工技术学报, 2015, 30(11): 1-6. Gu Guobiao, Ruan Lin, Liu Feihui, et al.Developments, applications and prospects of evaporative cooling technology[J]. Transactions of China Electrotechnical Society, 2015, 30(11): 1-6. [6] Ruan Lin, Li Zhenguo.The discussion of energy conservation of data center from the evaporative cooling technology of HPC[C]//Proceedings of the International Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA), Las Vegas, USA, 2012: 1-6. [7] 曹瑞, 阮琳, 闫静, 等. 换流阀蒸发冷却系统关键部件的设计研究[J]. 工程热物理学报, 2019, 40(10): 2373-2376. Cao Rui, Ruan Lin, Yan Jing, et al.study on key components of evaporative cooling system of converter valve[J]. Journal of Engineering Thermophysics, 2019, 40(10): 2373-2376. [8] 郭朝红, 董海虹, 余顺周, 等. 蒸发冷却汽轮发电机中两相流型的过渡准则[J]. 中国电机工程学报, 2007, 27(17): 67-71. Guo Chaohong, Dong Haihong, Yu Shunzhou, et al.Research on two-phase flow pattern transition in the evaporative turbine generator[J]. Proceedings of the CSEE, 2007, 27(17): 67-71. [9] Dong Haihong, Ruan Lin. Thermal-hydraulic characteristics of the natural circulation evaporative cooling system of hydro-generator stator busbar under different loop heights[J]. Journal of Thermal Science and Technology, 2019, 14(2): JTST0017. [10] Nasr M H, Green C E, Kottke P A, et al.Flow regimes and convective heat transfer of refrigerant flow boiling in ultra-small clearance microgaps[J]. International Journal of Heat and Mass Transfer, 2017, 108: 1702-1713. [11] Mcneil D A, Raeisi A H, Kew P A, et al.A comparison of flow boiling heat-transfer in in-line mini pin fin and plane channel flows[J]. Applied Thermal Engineering, 2010, 30(16): 2412-2425. [12] Yin Liaofei, Jiang Peixue, Xu Ruina, et al.Water flow boiling in a partially modified microgap with shortened micro pin fins[J]. International Journal of Heat and Mass Transfer, 2020, 155: 119819. [13] Asrar P, Zhang X, Green C E, et al.Flow boiling of R245fa in a microgap with staggered circular cylindrical pin fins[J]. International Journal of Heat and Mass Transfer, 2018, 121: 329-342. [14] Falsetti C, Jafarpoorchekab H, Magnini M, et al.Two-phase operational maps, pressure drop, and heat transfer for flow boiling of R236fa in a micro-pin fin evaporator[J]. International Journal of Heat and Mass Transfer, 2017, 107: 805-819. [15] Law M, Lee P-S.Effects of varying secondary channel widths on flow boiling heat transfer and pressure characteristics in oblique-finned microchannels[J]. International Journal of Heat and Mass Transfer, 2016, 101: 313-326. [16] 吴晓敏, 王晓亮, 王维城. 水平微肋管内流动蒸发换热特性的实验研究[J]. 化工学报, 2003, 54(9): 1215-1219. Wu Xiaomin, Wang Xiaoliang, Wang Weicheng.Flow evaporation heat transfer and pressure drop in horizontal micro-fin tubes[J]. Journal of Chemical Industry and Engineering, 2003, 54(9): 1215-1219. [17] 杜保周, 李慧君, 郭保仓, 等. 微肋阵通道流动沸腾换热与压降特性[J]. 化工学报, 2018, 69(12): 4979-4989. Du Baozhou, Li Huijun, Guo Baocang, et al.Flow boiling heat transfer and pressure drop characteristics in micro channel with micro pin fins[J]. Journal of Chemical Industry and Engineering, 2018, 69(12): 4979-4989. [18] 杨世铭, 陶文铨. 传热学[M]. 北京: 高等教育出版社, 2006. [19] 吕俊复, 吴玉新, 李舟航, 等. 气液两相流动与沸腾传热[M]. 北京: 科学出版社, 2017. [20] Kline S J, McClintock F A. Describing uncertainties in single-sample experiments[J]. Mechanical Engi-neering, 1953, 75: 3-8. [21] Chang S W, Yang T L, Huang C C, et al.Endwall heat transfer and pressure drop in rectangular channels with attached and detached circular pin-fin array[J]. International Journal of Heat & Mass Transfer, 2008, 51(21-22): 5247-5259. [22] 史一涛, 曹瑞, 阮琳. 表贴式内肋阵自循环蒸发冷却系统沸腾换热流动实验研究[J]. 中国电机工程学报, 2020, 40(6): 1997-2006. Shi Yitao, Cao Rui, Ruan Lin.Experimental study on boiling heat transfer and flow of surface-mounted internal rib array self-circulating evaporative cooling system[J]. Proceedings of the CSEE, 2020, 40(6): 1997-2006. [23] Shi Yitao, Cao Rui, Ruan Lin.Visual experimental study on two phase flow patterns of the evaporative cooling system[J]. IEEE Access, 2021, 9: 9277-9283. |
|
|
|