|
|
Adsorption Properties of Os Doped SnS2 Monolayer to SOF2 and SO2F2 |
Gui Yingang1, Chen Ying1, Tang Chao1, Chen Xianping2 |
1. College of Engineering and Technology Southwest University Chongqing 400700 China; 2. College of Optoelectronic Engineering Chongqing University Chongqing 400044 China |
|
|
Abstract Based on density functional theory(DFT) of first-principles calculation in this paper, the gas-sensitive response of some decomposition gases such as SOF2 and SO2F2 on intrinsic SnS2 and Osn(n=1~2) modified SnS2 surface was explored. The gas sensing response mechanism of the three materials to SOF2 and SO2F2 was compared and analyzed from adsorption energy, band structure, DOS and HOMO-LUMO. It is found that intrinsic SnS2 has poor response to SOF2 and SO2F2. However, after doping,the Os modified position as active site on the surface of substrate materials effectively improves the gas sensitive response characteristics of the two gases on SnS2 surface: Osn-SnS2(n=1~2) have excellent performance on the adsorption of SOF2 and for SO2F2, Os2-SnS2 has ideal sensing properties. This study provides a theoretical basis for the experimental development of high-performance gas sensing sensors for detecting SF6 decomposing gases.
|
Received: 11 May 2021
|
|
|
|
|
[1] 窦小晶, 叶日新, 付纪华, 等. SF6气体分解产物检测技术及其应用的研究现状[J]. 电网与清洁能源, 2019, 35(7): 24-31. Dou Xiaojing, Ye Rixin, Fu Jihua, et al.Research status of SF6 gas decomposition products detection methods and their application[J]. Power System and Clean Energy, 2019, 35(7): 24-31. [2] Cao Wenhai, Gui Yingang, Chen Tao, et al.Adsorption and gas-sensing properties of Pt2-GaNNTs for SF6 decomposition products[J]. Applied Surface Science, 2020, 524: 146570. [3] 张晓星, 王宇非, 崔兆仑, 等. 不同填充材料对介质阻挡放电降解SF6的实验研究[J]. 电工技术学报, 2021, 36(2): 397-406. Zhang Xiaoxing, Wang Yufei, Cui Zhaolun, et al.Experimental study on the degradation of SF6 by dielectric barrier discharge with different packing materials[J]. Transactions of China Electrotechnical Society, 2021, 36(2): 397-406. [4] 王宝山, 余小娟, 侯华, 等. 六氟化硫绝缘替代气体的构效关系与分子设计技术现状及发展[J]. 电工技术学报, 2020, 35(1): 21-33. Wang Baoshan, Yu Xiaojuan, Hou Hua, et al.Review on the developments of structure-activity relationship and molecular design of the replacement dielectric gases for SF6[J]. Transactions of China Electrotechnical Society, 2020, 35(1): 21-33. [5] 陆云才, 胡汉巧, 蔚超, 等. 基于超声波法的变压器重症监护系统研制及应用[J]. 电力工程技术, 2017, 36(2): 94-98. Lu Yuncai, Hu Hanqiao, Wei Chao, et al.development and application of transformer intensive care system based on ultrasonic method[J]. Electric Power Engineering Technology, 2017, 36(2): 94-98. [6] Chu Jifeng, Wang Xiaohua, Wang Dawei, et al.Highly selective detection of sulfur hexafluorride decomposition components H2S and SOF2 employing sensors based on tin oxide modified reduced graphene oxide[J]. Carbon, 2018, 135: 95-103. [7] Wang Jingxuan, Zhou Qu, Zeng Wen.Competitive adsorption of SF6 decompositions on Ni-doped ZnO (100) surface: computational and experimental study[J]. Applied Surface Science, 2019, 479: 185-197. [8] 张晓星, 董星辰, 陈秦川. 锐钛矿型(101)晶面吸附SF6局部放电分解组分的气敏机理分析[J]. 电工技术学报, 2017, 32(3): 200-209. Zhang Xiaoxing, Dong Xingchen, Chen Qinchuan.Gas sensing mechanism analysis of SF6 decomposed gases adsorption on anatase (101) surface under partial discharge[J]. Transactions of China Electrotechnical Society, 2017, 32(3): 200-209. [9] 季严松, 王承玉, 杨韧, 等. SF6气体分解产物检测技术及其在GIS设备故障诊断中的应用[J]. 高压电器, 2011, 47(2): 100-103, 107. Ji Yansong, Wang Chengyu, Yang Ren, et al.Measuring technique of SF6 decomposition products and its application to fault diagnosis of GIS[J]. High Voltage Apparatus, 2011, 47(2): 100-103, 107. [10] Wu Peng, Zhang Xiaoxing, Chen Dachang, et al.Adsorption of SF6 decomposed products on ZnO-modified C3N: a theoretical study[J]. Nanoscale Research Letters, 2020, 15(1): 1-11. [11] 王邸博, 陈达畅, 皮守苗, 等. 基于密度泛函理论的SF6分解组分在ZnO (0001) 吸附及传感性能研究[J] 电工技术学报, 2020, 35(7): 1592-1602. Wang Dibo, Chen Dachang, Pi Shoumiao, et al.Density functional theory study of SF6 decomposed products over ZnO(0001) with gas sensing properties[J]. Transactions of China Electrotechnical Society, 2020, 35(7): 1592-1602. [12] 赵建利, 姚顺, 岳永刚, 等. 500kV SF6瓷质套管多工况仿真与故障分析[J]. 电工技术学报, 2021, 36(S2): 736-745. Zhao Jianli, Yao Shun, Yue Yonggang, et al.Simulation and failure analysis of 500kV SF6 porcelain bushing under complicated working conditions[J]. Transactions of China Electrotechnical Society, 2021, 36(S2): 736-745. [13] 陈东, 雷诗铭, 刘春意, 等. 基于SF6气体分解产物检测的潜伏性故障判断[J]. 湖北电力, 2020, 44(3): 70-74. Chen Dong, Lei Shiming, Liu Chunyi, et al.Latent fault judgment based on SF6 gas decomposition products detection[J]. Hubei Electric Power, 2020, 44(3): 70-74. [14] 周朕蕊, 韩冬, 赵明月, 等. SF6替代气体分解特性的研究综述[J]. 电工技术学报, 2020, 35(23): 4998-5014. Zhou Zhenrui, Han Dong, Zhao Mingyue, et al.Review on decomposition characteristics of SF6 alternative gases[J]. Transactions of China Electrotechnical Society, 2020, 35(23): 4998-5014. [15] 桂银刚,许文龙,张晓星,等. TiO2掺杂石墨烯对 SO2气体的气敏特性研究[J]. 电工技术学报,2021,36(21): 4590-4597. Gui Yingang, Xu Wenlong, Zhang Xiaoxing, et al.Adsorption property of SO2 gas on TiO2-doped graphene[J]. Transactions of China Electrotechnical Society, 2021, 36(21): 4590-4597. [16] Qian Hai, Deng Jun, Zhou Haibin.First-principles study of Pd-MoSe2 as sensing material for characteristic SF6 decomposition components[J]. AIP Advances, 2019, 9(12): 125013. [17] Liu Daikun, Gui Yingang, Ji Chang, et al.Adsorption of SF6 decomposition components over Pd (111): A density functional theory study[J]. Applied Surface Science, 2019, 465: 172-179. [18] Wang Yao, Gui Yingang, Ji Chang, et al.Adsorption of SF6 decomposition components on Pt-3-TiO2 (101) surface: a DFT study[J]. Applied Surface Science, 2018, 459: 242-248. [19] Guo Haojie, Zheng Kai, Cui Heping, et al.High sensitivity gas sensor to detect SF6 decomposition components based on monolayer antimonide phosphorus[J]. Chemical Physics Letters, 2020, 756(1): 137868. [20] Upadhyay D, Roondhe B, Pratap A, et al.Two-dimensional delafossite cobalt oxyhydroxide as a toxic gas sensor[J]. Applied Surface Science, 2019, 476: 198-204. [21] Wang Xiaodong, Wang Jing.Effects of Pt and Au adsorption on the gas sensing performance of SnS2 monolayers: a DFT study[J]. Materials Science in Semiconductor Processing, 2021, 121: 105416. [22] Patel A, Roondhe B, Jha P K.Ni doping effect on the electronic and sensing properties of 2D SnO2[C]// International Conference on Nanomaterials for Energy Conversion & Storage Applications, Necsa, 2018, 1961(1): 030039. [23] Zhang Xiaoxing, Fang Rongxing, Chen Dachang, et al.Using Pd-Doped γ-Graphyne to detect dissolved gases in transformer oil: a density functional theory investigation[J]. Nanomaterials, 2019, 9(10): 9101490. [24] Zhang Xiaoxing, Yu Lei, Gui Yingang, et al.First-principles study of SF6 decomposed gas adsorbed on Au-decorated graphene[J]. Applied Surface Science, 2016, 367: 259-269. [25] Zhang Xiaoxing, Yu Lei, Wu Xiaoqing, et al.Experimental sensing and density functional theory study of H2S and SOF2 adsorption on Au-modified graphene[J]. Advanced Science, 2015, 2(11): 612-612. [26] Fan Yuehua, Zhang Jinyan, Qiu Yuzhi, et al.A DFT study of transition metal (Fe, Co, Ni, Cu, Ag, Au, Rh, Pd, Pt and Ir)-embedded monolayer MoS2 for gas adsorption[J]. Computational Materials Science, 2017, 138: 255-266. [27] Qian Hai, Lu Wenhao, Wei Xiaoxing, et al.H2S and SO2 adsorption on Pt-MoS2 adsorbent for partial discharge elimination: a DFT study[J]. Results in Physics, 2019, 12 107-112. [28] Zhu Jia, Zhang Hui, Tong Yawen, et al.First-principles investigations of metal (V, Nb, Ta)-doped monolayer MoS2: Structural stability, electronic properties and adsorption of gas molecules[J]. Applied Surface Science, 2017, 419: 522-530. [29] Li Tao, Gui Yingang, Zhao Wenhao, et al.Palladium modified MoS2 monolayer for adsorption and scavenging of SF6 decomposition products: A DFT study[J]. Physica E: Low-dimensional Systems and Nanostructures, 2020, 123: 114178. [30] Gui Yingang, Peng Xiao, Liu Kai, et al.Adsorption of C2H2, CH4 and CO on Mn-doped graphene: atomic, electronic, and gas-sensing properties[J]. Physica E: Low-dimensional Systems and Nanostructures, 2020, 119: 113959. [31] Wei Huangli, Gui Yingang, Kang Jian, et al.A DFT study on the adsorption of H2S and SO2 on Ni doped MoS2 monolayer[J]. Nanomaterials, 2018, 8(9): 8090646. [32] Li Bo, Xing Tao, Zhong Mianzeng, et al.A two-dimensional Fe-doped SnS2 magnetic semiconductor[J]. Nature communications, 2017, 8: 1-7. [33] Xu Liping, Zhang Peng, Jiang Huaning, et al.Large-scale growth and field-effect transistors electrical engineering of atomic-layer SnS2[J]. Small, 2019, 15(46): 1904116. [34] Ma Shouxiao, Jin Ying, Si Yang.Adsorption behavior of Pd-doped SnS2 monolayer upon H2 and C2H2 for dissolved gas analysis in transformer oil[J]. Adsorption, 2019, 25(8): 1587-1594. [35] Guo Shiying, Hu Xuemin, Huang Yong, et al.A highly sensitive and selective SnS2 monolayer sensor in detecting SF6 decomposition gas[J]. Applied Surface Science, 2021, 541: 148494. [36] Lin Long, Shi Zhengguang, Huang Jingtao, et al.Molecular adsorption properties of CH4 with noble metals doped onto oxygen vacancy defect of anatase TiO2 (1 0 1) surface: first-principles calculations[J]. Applied Surface Science, 2020, 514: 145900. [37] Wanno B, Tabtimsai C.A DFT investigation of CO adsorption on VIIIB transition metal-doped graphene sheets[J]. Superlattices and Microstructures, 2014, 67: 110-117. [38] Tabtimsai C, Rakrai W, Wanno B.Hydrogen adsorption on graphene sheets doped with group 8B transition metal: a DFT investigation[J]. Vacuum, 2017, 139: 101-108. [39] Delley B.From molecules to solids with the DMol3 approach[J]. The Journal of Chemical Physics, 2000, 113(18): 7756-7764. [40] Perdew J P, Burke K, Ernzerhof M.Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868. |
|
|
|