[1] 舒印彪, 赵勇, 赵良, 等. “双碳” 目标下我国能源电力低碳转型路径[J]. 中国电机工程学报, 2023, 43(5): 1663-1672.
Shu Yinbiao, Zhao Yong, Zhao Liang, et al.Study on low carbon energy transition path toward carbon peak and carbon neutrality[J]. Proceedings of the CSEE, 2023, 43(5): 1663-1672.
[2] 彭也伦, 黄守道, 张文娟, 等. 一种基于电流滞环控制的模块化多电平变流器调制策略[J]. 电工技术学报, 2016, 31(17): 94-101.
Peng Yelun, Huang Shoudao, Zhang Wenjuan, et al.A modulation strategy based on current hysteresis control for modular multilevel converter[J]. Transactions of China Electrotechnical Society, 2016, 31(17): 94-101.
[3] 赵国亮, 陈维江, 邓占锋, 等. 柔性低频交流输电关键技术及应用[J]. 电力系统自动化, 2022, 46(15): 1-10.
Zhao Guoliang, Chen Weijiang, Deng Zhanfeng, et al.Key technologies and application of flexible low-frequency AC transmission[J]. Automation of Electric Power Systems, 2022, 46(15): 1-10.
[4] 迟永宁, 梁伟, 张占奎, 等. 大规模海上风电输电与并网关键技术研究综述[J]. 中国电机工程学报, 2016, 36(14): 3758-3771.
Chi Yongning, Liang Wei, Zhang Zhankui, et al.An overview on key technologies regarding power transmission and grid integration of large scale offshore wind power[J]. Proceedings of the CSEE, 2016, 36(14): 3758-3771.
[5] 康重庆, 姚良忠. 高比例可再生能源电力系统的关键科学问题与理论研究框架[J]. 电力系统自动化, 2017, 41(9): 2-11.
Kang Chongqing, Yao Liangzhong.Key scientific issues and theoretical research framework for power systems with high proportion of renewable energy[J]. Automation of Electric Power Systems, 2017, 41(9): 2-11.
[6] 蔡国伟, 孔令国, 薛宇, 等. 风氢耦合发电技术研究综述[J]. 电力系统自动化, 2014, 38(21): 127-135.
Cai Guowei, Kong Lingguo, Xue Yu, et al.Overview of research on wind power coupled with hydrogen production technology[J]. Automation of Electric Power Systems, 2014, 38(21): 127-135.
[7] 肖立业, 刘向宏, 王秋良, 等. 超导材料及其应用现状与发展前景[J]. 中国工业和信息化, 2018(8): 30-37.
Xiao Liye, Liu Xianghong, Wang Qiuliang, et al.Superconducting materials and their application status and development prospect[J]. China Industry & Information Technology, 2018(8): 30-37.
[8] 严陆光, 周孝信, 甘子钊, 等. 关于发展高温超导输电的建议[J]. 电工电能新技术, 2014, 33(1): 1-9.
Yan Luguang, Zhou Xiaoxin, Gan Zizhao, et al.Proposal for development of high-temperature superconducting power transmission[J]. Advanced Technology of Electrical Engineering and Energy, 2014, 33(1): 1-9.
[9] 白利锋, 张平祥. 高温超导电机研究进展[J]. 低温物理学报, 2016, 38(5): 1-6.
Bai Lifeng, Zhang Pingxiang.The development of HTS motors[J]. Chinese Journal of Low Temperature Physics, 2016, 38(5): 1-6.
[10] Mijatovic N, Abrahamsen A B, Træholt C, et al.Superconducting generators for wind turbines: design considerations[J]. Journal of Physics: Conference Series, 2010, 234(3): 032038.
[11] Snitchler G, Gamble B, King C, et al.10 MW class superconductor wind turbine generators[J]. IEEE Transactions on Applied Superconductivity, 2011, 21(3): 1089-1092.
[12] Maples B, Hand M, Musial W.Comparative assessment of direct drive high temperature superconducting generators in multi-megawatt class wind turbines[R]. National Renewable Energy Lab.(NREL), Golden, CO(United States), 2010.
[13] Hosseini S E, Wahid M A.Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development[J]. Renewable and Sustainable Energy Reviews, 2016, 57: 850-866.
[14] 田甜, 李怡雪, 黄磊, 等. 海上风电制氢技术经济性对比分析[J]. 电力建设, 2021, 42(12): 136-144.
Tian Tian, Li Yixue, Huang Lei, et al.Comparative analysis on the economy of hydrogen production technology for offshore wind power consumption[J]. Electric Power Construction, 2021, 42(12): 136-144.
[15] 李争, 张蕊, 孙鹤旭, 等. 可再生能源多能互补制-储-运氢关键技术综述[J]. 电工技术学报, 2021, 36(3): 446-462.
Li Zheng, Zhang Rui, Sun Hexu, et al.Review on key technologies of hydrogen generation, storage and transportation based on multi-energy complementary renewable energy[J]. Transactions of China Electrotechnical Society, 2021, 36(3): 446-462.
[16] Perveen R, Kishor N, Mohanty S R.Off-shore wind farm development: Present status and challenges[J]. Renewable and Sustainable Energy Reviews, 2014, 29: 780-792.
[17] Barthelmie R J, Frandsen S T, Nielsen M N, et al.Modelling and measurements of power losses and turbulence intensity in wind turbine wakes at Middelgrunden offshore wind farm[J]. Wind Energy, 2007, 10(6): 517-528.
[18] Kooijman H J T, De Noord M, Uyterlinde M A, et al. Large scale offshore wind energy in the north sea—a technology and policy perspective[J]. Wind Engineering, 2004, 28(2): 143-156.
[19] Breton S P, Moe G.Status, plans and technologies for offshore wind turbines in Europe and North America[J]. Renewable Energy, 2009, 34(3): 646-654.
[20] Sun Xiaojing, Huang Diangui, Wu Guoqing.The current state of offshore wind energy technology development[J]. Energy, 2012, 41(1): 298-312.
[21] Apostolaki-Iosifidou E, McCormack R, Kempton W, et al. Transmission design and analysis for large-scale offshore wind energy development[J]. IEEE Power and Energy Technology Systems Journal, 2019, 6(1): 22-31.
[22] Crivellari A, Cozzani V.Offshore renewable energy exploitation strategies in remote areas by power-to-gas and power-to-liquid conversion[J]. International Journal of Hydrogen Energy, 2020, 45(4): 2936-2953.
[23] Quarton C J, Samsatli S.Power-to-gas for injection into the gas grid: What can we learn from real-life projects, economic assessments and systems modelling?[J]. Renewable and Sustainable Energy Reviews, 2018, 98: 302-316.
[24] Bahirat H J, Mork B A.Operation of DC series-parallel connected offshore wind farm[J]. IEEE Transactions on Sustainable Energy, 2019, 10(2): 596-603.
[25] 新华社. 中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要[J]. 中国水利, 2021(6): 1-38.
Xinhua News Agency. The outline of the 14th Five-Year Plan(2021—2025) for national economic and social development and the long-range objectives through the year 2035 of P. R. China[J]. China Water Resources, 2021(6): 1-38.
[26] 唐征歧, 周彬, 王凯. 海上风电发展及其技术研究概述[J]. 太阳能, 2018(6): 11-16, 48.
Tang Zhengqi, Zhou Bin, Wang Kai.Review of development of offshore wind power and its technology research[J]. Solar Energy, 2018(6): 11-16, 48.
[27] Shin H, Dam P T, Jung K J, et al.Model test of new floating offshore wind turbine platforms[J]. International Journal of Naval Architecture and Ocean Engineering, 2013, 5(2): 199-209.
[28] European Wind Energy Association(EWEA). The economics of wind energy[M]. Brussels, Belgium: EWEA, 2015.
[29] 张佳丽, 李少彦. 海上风电产业现状及未来发展趋势展望[J]. 风能, 2018(10): 48-52.
Zhang Jiali, Li Shaoyan.Present situation and future development trend of offshore wind power industry[J]. Wind Energy, 2018(10): 48-52.
[30] Heronemus W E.Pollution-free energy from offshore winds[C]//8th Annual Conference and Exposition, Marine Technology Society, 1972, Washington, DC, 1972.
[31] Komiyama R, Fujii Y.Large-scale integration of offshore wind into the Japanese power grid[J]. Sustainability Science, 2021, 16(2): 429-448.
[32] Igwemezie V, Mehmanparast A, Kolios A.Current trend in offshore wind energy sector and material requirements for fatigue resistance improvement in large wind turbine support structures-A review[J]. Renewable and Sustainable Energy Reviews, 2019, 101: 181-196.
[35] Henderson A R, Witcher D.Floating offshore wind energy—a review of the current status and an assessment of the prospects[J]. Wind Engineering, 2010, 34(1): 1-16.
[36] American Bureau of Shipping. Rules for building and classing mobile offshore drilling units[S]. Houston,Texas,USA: ABO Shipping Publishing, 2008.
[37] Collu M, Maggi A, Gualeni P, et al.Stability requirements for floating offshore wind turbine (FOWT) during assembly and temporary phases: Overview and application[J]. Ocean Engineering, 2014, 84: 164-175.
[38] Chan Chow M.Mooring system design for a floating wind farm in very deep water-European Wind Energy Master Thesis[D]. Norway: Norwegian University of Science and Technology, 2019.
[39] Pereyra B.Design of a counter weight suspension system for the Tetraspar floating offshore wind turbine[D]. Norway: Norwegian University of Science and Technology, 2018.
[40] Taninoki R, Abe K, Azuma D, et al.Dynamic cable system for floating offshore wind power generation[J]. SEI Technical Review, 2017, 84(53-58): 146.
[41] Duan Fei, Hu Zhiqiang, Wang Jin.Investigation of the VIMs of a spar-type FOWT using a model test method[J]. 2016, 8(6): 063301.
[42] Bae Y H, Kim M H.Rotor-floater-tether coupled dynamics including second-order sum-frequency wave loads for a mono-column-TLP-type FOWT (floating offshore wind turbine)[J]. Ocean Engineering, 2013, 61: 109-122.
[43] Tran T T, Kim D H.The aerodynamic interference effects of a floating offshore wind turbine experiencing platform pitching and yawing motions[J]. Journal of Mechanical Science and Technology, 2015, 29(2): 549-561.
[44] Farrugia R, Sant T, Micallef D.A study on the aerodynamics of a floating wind turbine rotor[J]. Renewable Energy, 2016, 86: 770-784.
[45] Duan Fei, Hu Zhiqiang, Niedzwecki J M.Model test investigation of a spar floating wind turbine[J]. Marine Structures, 2016, 49: 76-96.
[46] Song Xiaowei, Bührer C, Brutsaert P, et al.Ground testing of the world’s first MW-class direct-drive superconducting wind turbine generator[J]. IEEE Transactions on Energy Conversion, 2020, 35(2): 757-764.
[47] Shafaie R, Kalantar M.Comparison of theoretical and numerical electromagnetic modeling for HTS synchronous generator[J]. IEEE Transactions on Applied Superconductivity, 2015, 25(1): 5200107.
[48] 王锡凡, 卫晓辉, 宁联辉, 等. 海上风电并网与输送方案比较[J]. 中国电机工程学报, 2014, 34(31): 5459-5466.
Wang Xifan, Wei Xiaohui, Ning Lianhui, et al.Integration techniques and transmission schemes for off-shore wind farms[J]. Proceedings of the CSEE, 2014, 34(31): 5459-5466.
[49] Li Jing, Zhang Xiaoping.Small signal stability of fractional frequency transmission system with offshore wind farms[J]. IEEE Transactions on Sustainable Energy, 2016, 7(4): 1538-1546.
[50] Meng Yongqing, Liu Bo, Luo Huiyong, et al.Control scheme of hexagonal modular multilevel direct converter for offshore wind power integration via fractional frequency transmission system[J]. Journal of Modern Power Systems and Clean Energy, 2018, 6(1): 168-180.
[51] Liu Shenquan, Wang Xifan, Meng Yongqing, et al.A decoupled control strategy of modular multilevel matrix converter for fractional frequency transmission system[J]. IEEE Transactions on Power Delivery, 2017, 32(4): 2111-2121.
[52] Nick W, Frank M, Klaus G, et al.Operational experience with the world’s first 3600 rpm 4 MVA generator at siemens[J]. IEEE Transactions on Applied Superconductivity, 2007, 17(2): 2030-2033.
[53] Yanamoto T, Izumi M, Umemoto K, et al.Load test of 3-MW HTS motor for ship propulsion[J]. IEEE Transactions on Applied Superconductivity, 2017, 27(8): 5204305.
[54] Lewis C, Muller J.A direct drive wind turbine HTS generator[C]//2007 IEEE Power Engineering Society General Meeting, Tampa, FL, USA, 2007: 1-8.
[55] Song Xiaowei, Bührer C, Brutsaert P, et al.Designing and basic experimental validation of the world’s first MW-class direct-drive superconducting wind turbine generator[J]. IEEE Transactions on Energy Conversion, 2019, 34(4): 2218-2225.
[56] Pienkos J.Cooling, thermal design, and stability of a superconducting motor[M]. The Florida State University, 2009.
[57] Chen Biao, Gu Guobiao, Zhang Guoqiang, et al.Analysis and design of cooling system in high temperature superconducting synchronous machines[J]. IEEE Transactions on Applied Superconductivity, 2007, 17(2): 1557-1560.
[58] Kim Y, Ki T, Kim H, et al.High temperature superconducting motor cooled by on-board cryocooler[J]. IEEE Transactions on Applied Superconductivity, 2011, 21(3): 2217-2220.
[59] Schiferl R, Flory A, Livoti W C, et al.High temperature superconducting synchronous motors: economic issues for industrial applications[C]//2006 Record of Conference Papers - IEEE Industry Applications Society 53rd Annual Petroleum and Chemical Industry Conference, Philadelphia, PA, USA, 2006: 1-9.
[60] 李岩, 冯俊杰, 卢毓欣, 等. 大容量远海风电柔性直流送出关键技术与展望[J]. 高电压技术, 2022, 48(9): 3384-3393.
Li Yan, Feng Junjie, Lu Yuxin, et al.Key technologies and prospects of VSC-HVDC for large-capacity and long-distance offshore wind power transmission[J]. High Voltage Engineering, 2022, 48(9): 3384-3393.
[61] 王锡凡, 王碧阳, 王秀丽, 等. 面向低碳的海上风电系统优化规划研究[J]. 电力系统自动化, 2014, 38(17): 4-13, 19.
Wang Xifan, Wang Biyang, Wang Xiuli, et al.Study of optimal planning methods for offshore wind power systems oriented low-carbon[J]. Automation of Electric Power Systems, 2014, 38(17): 4-13, 19.
[62] 王锡凡, 刘沈全, 宋卓彦, 等. 分频海上风电系统的技术经济分析[J]. 电力系统自动化, 2015, 39(3): 43-50.
Wang Xifan, Liu Shenquan, Song Zhuoyan, et al.Technical and economical analysis on offshore wind power system integrated via fractional frequency transmission system[J]. Automation of Electric Power Systems, 2015, 39(3): 43-50.
[63] Zhao Menghua, Chen Zhe, Blaabjerg F.Generation ratio availability assessment of electrical systems for offshore wind farms[J]. IEEE Transactions on Energy Conversion, 2007, 22(3): 755-763.
[64] Negra N B, Todorovic J, Ackermann T.Loss evaluation of HVAC and HVDC transmission solutions for large offshore wind farms[J]. Electric Power Systems Research, 2006, 76(11): 916-927.
[65] Wang Xifan, Cao Chengjun, Zhou Zhichao.Experiment on fractional frequency transmission system[J]. IEEE Transactions on Power Systems, 2006, 21(1): 372-377.
[66] Mohammadi A, Mehrpooya M.A comprehensive review on coupling different types of electrolyzer to renewable energy sources[J]. Energy, 2018, 158: 632-655.
[67] Widera B.Renewable hydrogen implementations for combined energy storage, transportation and stationary applications[J]. Thermal Science and Engineering Progress, 2020, 16: 100460.
[68] Nguyen T, Abdin Z, Holm T, et al.Grid-connected hydrogen production via large-scale water electrolysis[J]. Energy Conversion and Management, 2019, 200: 112108.
[69] Abdin Z, Zafaranloo A, Rafiee A, et al.Hydrogen as an energy vector[J]. Renewable and Sustainable Energy Reviews, 2020, 120: 109620.
[70] Moriarty P, Honnery D.Intermittent renewable energy: The only future source of hydrogen?[J]. International Journal of Hydrogen Energy, 2007, 32(12): 1616-1624.
[71] Chi Jun, Yu Hongmei.Water electrolysis based on renewable energy for hydrogen production[J]. Chinese Journal of Catalysis, 2018, 39(3): 390-394.
[72] Dutton A G, Bleijs J A M, Dienhart H, et al. Experience in the design, sizing, economics, and implementation of autonomous wind-powered hydrogen production systems[J]. International Journal of Hydrogen Energy, 2000, 25(8): 705-722.
[73] Kassem N.Offshore wind farms for hydrogen production subject to uncertainties[C]//International Joint Power Generation Conference Collocated with TurboExpo 2003, Atlanta, Georgia, USA, 2008: 857-864.
[74] Bhandari R, Trudewind C A, Zapp P.Life cycle assessment of hydrogen production via electrolysis-a review[J]. Journal of Cleaner Production, 2014, 85: 151-163.
[75] Takahashi R, Kinoshita H, Murata T, et al.Output power smoothing and hydrogen production by using variable speed wind generators[J]. IEEE Transactions on Industrial Electronics, 2010, 57(2): 485-493.
[76] García Clúa J G, De Battista H, Mantz R J. Control of a grid-assisted wind-powered hydrogen production system[J]. International Journal of Hydrogen Energy, 2010, 35(11): 5786-5792.
[77] Bernal-Agustín J L, Dufo-López R. Hourly energy management for grid-connected wind-hydrogen systems[J]. International Journal of Hydrogen Energy, 2008, 33(22): 6401-6413.
[78] Yan Zhuoyong, Gu Weidong.Research on integrated system of non-grid-connected wind power and water-electrolytic hydrogen production[C]//2010 World Non-Grid-Connected Wind Power and Energy Conference, Nanjing, China, 2010: 1-4.
[79] Ulleberg Ø, Nakken T, Eté A.The wind/hydrogen demonstration system at Utsira in Norway: Evaluation of system performance using operational data and updated hydrogen energy system modeling tools[J]. International Journal of Hydrogen Energy, 2010, 35(5): 1841-1852.
[80] Jepma C J, Schot M.On the economics of offshore energy conversion: smart combinations[J]. Converting Offshore Wind Energy into Green Hydrogen on Existing Oil and Gas Platforms in the North Sea. Energy Delta Institute (EDI), 2017, 3.
[81] Deng Fujin, Chen Zhe.Operation and control of a DC-grid offshore wind farm under DC transmission system faults[J]. IEEE Transactions on Power Delivery, 2013, 28(3): 1356-1363.
[82] 张尧翔, 刘文颖, 庞清仑, 等. 高比例风电接入系统光热发电-火电旋转备用优化方法[J]. 电工技术学报, 2022, 37(21): 5478-5489.
Zhang Yaoxiang, Liu Wenying, Pang Qinglun, et al.Optimal power spinning reserve method of concentrating solar power and thermal power for high-proportion wind power system[J]. Transactions of China Electrotechnical Society, 2022, 37(21): 5478-5489.
[83] Kasera J, Chaplot A, Maherchandani J K.Modeling and simulation of wind-PV hybrid power system using Matlab/Simulink[C]//2012 IEEE Students' Conference on Electrical, Electronics and Computer Science, Bhopal, India, 2012: 1-4.
[84] Ding Zeyu, Hou Hongjuan, Yu Gang, et al.Performance analysis of a wind-solar hybrid power generation system[J]. Energy Conversion and Management, 2019, 181: 223-234.
[85] Zhang Weiping, Maleki A, Rosen M A.A heuristic-based approach for optimizing a small independent solar and wind hybrid power scheme incorporating load forecasting[J]. Journal of Cleaner Production, 2019, 241: 117920.
[86] Zhang Debao, Liu Junwei, Jiao Shifei, et al.Research on the configuration and operation effect of the hybrid solar-wind-battery power generation system based on NSGA-II[J]. Energy, 2019, 189: 116121.
[87] Yang Yong, Guo Su, Liu Deyou, et al.Operation optimization strategy for wind-concentrated solar power hybrid power generation system[J]. Energy Conversion and Management, 2018, 160: 243-250.
[88] Al-Sharafi A, Sahin A Z, Ayar T, et al.Techno-economic analysis and optimization of solar and wind energy systems for power generation and hydrogen production in Saudi Arabia[J]. Renewable and Sustainable Energy Reviews, 2017, 69: 33-49.
[89] Murat G, Kale C.Techno-economical evaluation of a hydrogen refuelling station powered by Wind-PV hybrid power system: a case study for İzmir-Çeşme[J]. International Journal of Hydrogen Energy, 2018, 43(23): 10615-10625.
[90] Bačeković I, Poul Alberg Ø.A smart energy system approach vs a non-integrated renewable energy system approach to designing a future energy system in Zagreb[J]. Energy, 2018, 155: 824-837.
[91] Khiareddine A, Ben Salah C, Rekioua D, et al.Sizing methodology for hybrid photovoltaic/wind/hydrogen/battery integrated to energy management strategy for pumping system[J]. Energy, 2018, 153: 743-762.
[92] 郭怿, 明波, 黄强, 等. 考虑输电功率平稳性的水-风-光-储多能互补日前鲁棒优化调度[J]. 电工技术学报, 2023, 38(9): 2350-2363.
Guo Yi, Ming Bo, Huang Qiang, et al.Day-ahead robust optimal scheduling of hydro-wind-PV-storage complementary system considering the steadiness of power delivery[J]. Transactions of China Electrotechnical Society, 2023, 38(9): 2350-2363.
[93] 陈明昊, 孙毅, 谢志远. 基于双层深度强化学习的园区综合能源系统多时间尺度优化管理[J]. 电工技术学报, 2023, 38(7): 1864-1881.
Chen Minghao, Sun Yi, Xie Zhiyuan.The multi-time-scale management optimization method for park integrated energy system based on the bi-layer deep reinforcement learning[J]. Transactions of China Electrotechnical Society, 2023, 38(7): 1864-1881.
[94] 陈厚合, 丛前, 姜涛, 等. 多能协同的配电网供电恢复策略[J]. 电工技术学报, 2022, 37(3): 610-622, 685.
Chen Houhe, Cong Qian, Jiang Tao, et al.Distribution systems restoration with multi-energy synergy[J]. Transactions of China Electrotechnical Society, 2022, 37(3): 610-622, 685.
[95] 梁煜东, 陈峦, 张国洲, 等. 基于深度强化学习的多能互补发电系统负荷频率控制策略[J]. 电工技术学报, 2022, 37(7): 1768-1779.
Liang Yudong, Chen Luan, Zhang Guozhou, et al.Load frequency control strategy of hybrid power generation system: a deep reinforcement learning—based approach[J]. Transactions of China Electrotechnical Society, 2022, 37(7): 1768-1779.
[96] Psarros G N, Papathanassiou S A.Internal dispatch for RES-storage hybrid power stations in isolated grids[J]. Renewable Energy, 2020, 147: 2141-2150.
[97] Tsai C T, Beza T M, Wu Weibin, et al.Optimal configuration with capacity analysis of a hybrid renewable energy and storage system for an island application[J]. Energies, 2019, 13(1): 8.
[98] Donado K, Navarro L, Quintero M C G, et al. HYRES: a multi-objective optimization tool for proper configuration of renewable hybrid energy systems[J]. Energies, 2019, 13(1): 26.
[99] Xie Heping, Zhao Zhiyu, Liu Tao, et al.A membrane-based seawater electrolyser for hydrogen generation[J]. Nature, 2022, 612(7941): 673-678.
[100] Bailey W, Wen Huaming, Al-Mosawi M, et al.Testing of a lightweight coreless HTS synchronous generator cooled by subcooled liquid nitrogen[J]. IEEE Transactions on Applied Superconductivity, 2011, 21(3): 1159-1162. |