Optimization Design Method for Periodic Power Supply Based on Multi-Stage Capacitor Electric Field Energy Harvesting
Wang Wei1,2, Ren Hanlin1,2, Xu Chenjin1,2, Duan Mingrong1,2
1. NARI School of Electrical and Automation Engineering Nanjing Normal University Nanjing 210046 China; 2. Jiangsu Provincial Integrated Energy Equipment and Integration International Joint Laboratory Nanjing 210046 China
Abstract:With the development of the smart grid, a large number of new sensors have entered the power system, taking an essential part in the online monitoring system of the power grid. On the sensor power supply source, the drawbacks of the traditional power supply mode can be effectively solved by utilizing environmental energy to supply online monitoring devices. Electric field energy has a stable energy supply, which can be used as a reliable power source for online monitoring devices of power transmission and transformation equipment. However, in practical applications, due to the low power consumption of electric field-induction energy harvesting methods, the intermittent time of online monitoring devices is long. This paper proposed a structure and control method for the electric-field energy harvesting power source based on the multi-stage capacitor to reduce device losses and volume and improve energy transfer efficiency. Firstly, the disconnector is selected as a practical application scenario. By constructing an equal-scale finite element model, the influence of the area and installation position of the energy harvesting electrode on the energy harvesting performance is obtained. Secondly, the structure of the electric field energy harvesting circuit for multi-stage capacitors and its working logic are introduced. This circuit operates in a periodic mode. When using two-stage energy harvesting capacitors, each working cycle can be divided into three stages: the charging stage, the first-stage capacitor discharge stage, and the second-stage capacitor discharge stage. When the second stage energy harvesting capacitor is discharged, it enters the next work cycle. Thirdly, by simplifying the equivalent circuit of the discharge circuit of the energy harvesting capacitor and solving the state equation of the circuit in parallel, the energy transfer efficiency expression for each stage of energy harvesting capacitor discharge is obtained. Finally, the capacitance values of the energy harvesting capacitor and energy storage capacitor are selected based on the actual energy demand of the sensor load. The influence of transformer turn ratios on the energy achievable per cycle and energy transfer efficiency is analyzed. Then, the optimal transformer turn ratio is selected to optimize the energy harvesting performance. The results show that when the energy harvesting capacitors reach the discharge threshold voltage, the first-stage energy harvesting capacitor begins to discharge. After discharge, the second-stage energy harvesting capacitor continues to discharge. After both energy-harvesting capacitors are discharged, the circuit enters the next working cycle. When the capacitance values of the energy collection and the energy storage capacitors are selected as 1.675 μF and 1 000 μF, and the discharge threshold voltage of the energy collection capacitor is set to 500 V, the energy collection performance of multi-winding transformers with different turn ratios is compared. When the turn ratio of the transformer is selected as 1 500/1 500/88, the energy transfer efficiency of the discharged energy harvesting capacitor is the highest, reaching 54.4%. This circuit can obtain 226 mJ of energy per cycle, which meets the wireless current sensor operation requirements for 1.648 seconds and sends 3 online monitoring data.
王维, 任翰林, 许晨进, 段名荣. 基于多级电容电场感应取能周期性供电电源的优化设计方法[J]. 电工技术学报, 2024, 39(20): 6282-6292.
Wang Wei, Ren Hanlin, Xu Chenjin, Duan Mingrong. Optimization Design Method for Periodic Power Supply Based on Multi-Stage Capacitor Electric Field Energy Harvesting. Transactions of China Electrotechnical Society, 2024, 39(20): 6282-6292.
[1] 张智刚, 康重庆. 碳中和目标下构建新型电力系统的挑战与展望[J]. 中国电机工程学报, 2022, 42(8): 2806-2819. Zhang Zhigang, Kang Chongqing.Challenges and prospects for constructing the new-type power system towards a carbon neutrality future[J]. Proceedings of the CSEE, 2022, 42(8): 2806-2819. [2] 张丽娜, 黄怿, 汪良杰, 等. 高灵敏硅凹槽膜片型光纤F-P局部放电超声传感器[J]. 电力工程技术, 2023, 42(5): 2-9. Zhang Lina, Huang Yi, Wang Liangjie, et al.High sensitivity fiber optic F-P partial discharge ultrasonic sensor based on a grooved silicon diaphragm[J]. Electric Power Engineering Technology, 2023, 42(5): 2-9. [3] 吴旭涛, 周秀, 周童浩, 等. 基于电场耦合原理和差分输入结构的电压传感器设计与实验[J]. 高压电器, 2022, 58(4): 172-178, 188. Wu Xutao, Zhou Xiu, Zhou Tonghao, et al.Design and experiment of voltage transformer based on electric field coupling principle and differential input structure[J]. High Voltage Apparatus, 2022, 58(4): 172-178, 188. [4] 徐志钮, 李先锋, 郭一帆, 等. 基于温度滞后相位的输电线路覆冰监测方法[J]. 电力工程技术, 2022, 41(6): 91-100. Xu Zhiniu, Li Xianfeng, Guo Yifan, et al.Icing monitoring method of transmission lines based on temperature lagging phase[J]. Electric Power Engineering Technology, 2022, 41(6): 91-100. [5] 杜厚贤, 刘昊, 雷龙武, 等. 基于振动信号多特征值的电力变压器故障检测研究[J]. 电工技术学报, 2023, 38(1): 83-94. Du Houxian, Liu Hao, Lei Longwu, et al.Power transformer fault detection based on multi- eigenvalues of vibration signal[J]. Transactions of China Electrotechnical Society, 2023, 38(1): 83-94. [6] 王义军, 左雪. 锂离子电池荷电状态估算方法及其应用场景综述[J]. 电力系统自动化, 2022, 46(14): 193-207. Wang Yijun, Zuo Xue.Review on estimation methods for state of charge of lithium-ion battery and their 7 application scenarios[J]. Automation of Electric Power Systems, 2022, 46(14): 193-207. [7] 李阳, 李垚, 王瑞, 等. 无线传感器网络单线电能传输系统的电磁安全性分析[J]. 电工技术学报, 2022, 37(4): 808-815. Li Yang, Li Yao, Wang Rui, et al.Electromagnetic safety analysis on single wire power transfer system based on wireless sensor networks[J]. Transactions of China Electrotechnical Society, 2022, 37(4): 808-815. [8] 陈赦, 胡东阳, 汪沨, 等. 电网状态监测装置自取能技术综述[J]. 高电压技术, 2023, 49(5): 2077-2089. Chen She, Hu Dongyang, Wang Feng, et al.Review on energy-harvesting technology for power grid condition monitoring device[J]. High Voltage Engineering, 2023, 49(5): 2077-2089. [9] Sah D K, Hazra A, Kumar R, et al.Harvested energy prediction technique for solar-powered wireless sensor networks[J]. IEEE Sensors Journal, 2023, 23(8): 8932-8940. [10] 黄浩博, 曹迪, 周志勇, 等. 基于涡激振动的压电风能收集器研究进展[J]. 力学学报, 2023, 55(10): 2132-2145. Huang Haobo, Cao Di, Zhou Zhiyong, et al.Research progress of piezoelectric wind energy harvesters based on vortex-induced vibration[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(10): 2132-2145. [11] 高凯, 彭晗, 王劭菁, 等. 基于非对称弹簧的宽频率范围振动能量收集器[J]. 电工技术学报, 2023, 38(10): 2832-2840. Gao Kai, Peng Han, Wang Shaojing, et al.Wide frequency range vibration energy harvester based on asymmetric springs[J]. Transactions of China Elec- trotechnical Society, 2023, 38(10): 2832-2840. [12] 黄文美, 刘泽群, 郭万里, 等. 磁致伸缩振动能量收集器的全耦合非线性等效电路模型[J]. 电工技术学报, 2023, 38(15): 4076-4086. Huang Wenmei, Liu Zequn, Guo Wanli, et al.Fully coupled nonlinear equivalent circuit model for mag- netostrictive vibration energy harvester[J]. Transa- ctions of China Electrotechnical Society, 2023, 38(15): 4076-4086. [13] 兰天, 蓝元良, 盛财旺, 等. 基于无线传感网络的换流阀温度传感器节点温差取能建模仿真[J]. 电网技术, 2021, 45(9): 3601-3608. Lan Tian, Lan Yuanliang, Sheng Caiwang, et al.Modeling of thermoelectric generator for powering wireless temperature sensor node employed in condition monitoring system of HVDC converter[J]. Power System Technology, 2021, 45(9): 3601-3608. [14] 许晨进, 王维, 汪鹤, 等. 输电线路感应取能电源宽流带拓扑性能对比分析与优化[J]. 中国电机工程学报, 2021, 41(22): 7631-7640. Xu Chenjin, Wang Wei, Wang He, et al.Topology comparison and optimization design of energy harvester based on wide-range current overhead AC transmission line[J]. Proceedings of the CSEE, 2021, 41(22): 7631-7640. [15] 叶凯, 刘柱, 赵鹏博, 等. 一种基于磁通控制的电磁感应式磁场能量收集器功率提升方法[J]. 电工技术学报, 2023, 38(1): 37-46. Ye Kai, Liu Zhu, Zhao Pengbo, et al.A power boosting method of electromagnetic induction magnetic field energy harvester based on magnetic flux control[J]. Transactions of China Electro- technical Society, 2023, 38(1): 37-46. [16] 侯建军, 左中印, 葛宏宇. 交流架空线路导线电磁感应取能功率分析与研究[J]. 电气技术, 2021, 22(1): 53-57. Hou Jianjun, Zuo Zhongyin, Ge Hongyu.Analysis and research on electromagnetic induction power- tapping of AC overhead transmission line[J]. Elec- trical Engineering, 2021, 22(1): 53-57. [17] 江翼, 刘正阳, 肖黎, 等. 基于多级电容充电的输电线路电场感应取能装置的研制[J]. 高压电器, 2020, 56(2): 176-182. Jiang Yi, Liu Zhengyang, Xiao Li, et al.Development of electric field-induced energy acquisition device based on multi-stage capacitor charging[J]. High Voltage Apparatus, 2020, 56(2): 176-182. [18] 肖前波, 廖峥, 刘刚旭, 等. 输电线路矢量电场测供一体传感器及电压反演方法[J]. 电气技术, 2024, 25(4): 24-31. Xiao Qianbo, Liao Zheng, Liu Gangxu, et al.Vector electric field sensor integrated energy supply and voltage inversion method for transmission lines[J]. Electrical Engineering, 2024, 25(4): 24-31. [19] 骆一萍, 曾翔君, 雷永平, 等. 基于放电法的高压电场感应取能技术[J]. 电力系统自动化, 2015, 39(8): 113-119. Luo Yiping, Zeng Xiangjun, Lei Yongping, et al.High voltage electric-field induction energy- acquisition technology based on discharge method[J]. Automation of Electric Power Systems, 2015, 39(8): 113-119. [20] 王黎明, 李宗, 孟晓波, 等. 一种交流电场无线取能电源的优化设计[J]. 高压电器, 2020, 56(5): 121-127. Wang Liming, Li Zong, Meng Xiaobo, et al.Optimization design of an AC electric field wireless power supply[J]. High Voltage Apparatus, 2020, 56(5): 121-127. [21] 何宁辉, 张佩, 吴旭涛, 等. 用于输电线路监测设备的一种电场感应取能电源[J]. 电源学报, 2020, 18(5): 203-209. He Ninghui, Zhang Pei, Wu Xutao, et al.Electric field induction power supply used in monitoring device of transmission line[J]. Journal of Power Supply, 2020, 18(5): 203-209. [22] 王黎明, 李宗, 孟晓波, 等. 基于电场感应的低功率在线监测传感器的供电技术[J]. 高电压技术, 2020, 46(2): 538-545. Wang Liming, Li Zong, Meng Xiaobo, et al.Power supply technology of low power on-line monitoring sensor based on electric field induction[J]. High Voltage Engineering, 2020, 46(2): 538-545. [23] 刘宏伟, 郑遵国, 李玉付, 等. 一种基于交流电场感应的取能电源设计[J]. 电力工程技术, 2023, 42(6): 214-222. Liu Hongwei, Zheng Zunguo, Li Yufu, et al.Optimal design of energy harvesting power supply based on AC electric field induction[J]. Electric Power Engin- eering Technology, 2023, 42(6): 214-222. [24] Zhang Jiajia, Li Ping, Wen Yumei, et al.A manage- ment circuit with upconversion oscillation technology for electric-field energy harvesting[J]. IEEE Transa- ctions on Power Electronics, 2016, 31(8): 5515-5523. [25] Zeng Xiangjun, Yang Zhengtao, Wu Pengfei, et al.Power source based on electric field energy harvesting for monitoring devices of high-voltage transmission line[J]. IEEE Transactions on Industrial Electronics, 2021, 68(8): 7083-7092.