Remaining Life Assessment of Silicone Gel Package Insulation Based on Pyrolysis Kinetics
Wang Wei1, Li Bei2, Wang Jian1, Ren Hanwen1, Li Qingmin1,3
1. State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources North China Electric Power University Beijing 102206 China;
2. College of Electrical Engineering Hebei University of Technology Tianjin 300130 China;
3. Beijing Key Lab of HV and EMC North China Electric Power University Beijing 102206 China
Power electronics is a prominent aspect and critical characteristic of the emerging power system, wherein power conversion equipment plays a vital role in facilitating energy conversion and delivery. The power electronic devices used in multi-energy conversion equipment are being designed to focus on high efficiency and power capabilities. Additionally, the high-frequency thermogenic effect is becoming increasingly prominent. As a result, the chip junction temperature typically reaches several hundred degrees. The silicone gel package insulation material is susceptible to aging and degradation while operating in high-temperature circumstances for extended periods, which can result in insulation failure. To solve this problem, this paper derives a microscopic pyrolysis kinetic characterization model for encapsulated insulation, proposes an efficient solution method for the three thermodynamic state parameters in the model, and then establishes a high-precision package insulation life assessment model.
Firstly, this research presents a model that characterizes the kinetics of pyrolysis for silicone gels at a microscopic level. A link is established between the remaining life assessment and the temperature integral P(u), the pyrolysis activation energy E, and the insulation failure temperature Tf. Subsequently, a solution algorithm is provided to determine the model state parameters efficiently. The validation results demonstrate that the temperature integration algorithm proposed in this paper outperforms the existing temperature integration results across the entire integration interval. Additionally, the enhancement of the Flynn-Wall-Ozawa method leads to a 2% increase in the accuracy of the activation energy calculation. At the same time, the insulation failure temperature of the silicone gel sample is 453℃ by the microscopic determination method, and the weight loss rate is only 3.4%, which is lower than the weight loss rate of 5% recommended by the national standard. This finding contributes to establishing a more rational criterion for life failure. The evaluation results indicate that temperature substantially impacts the package insulation. Specifically, for every 10℃ rise in operating temperature, the insulation life decreases by around 60%. Finally, the accuracy of the life prediction model provided in this research is demonstrated by an accelerated thermal aging experiment using silicone gel.
The following conclusions can be drawn from the experiments analysis: (1) Utilizing an enhanced temperature integration algorithm, a refined Flynn-Wall-Ozawa equation is formulated, resulting in a 2% enhancement in the precision of determining the activation energy of silicone gels compared to the conventional Flynn-Wall-Ozawa equation. (2) This study proposes a microscopic approach to determine the temperature at which insulation failure occurs in package materials. The results show that the silicone gel sample had insulation failure at a temperature of 453℃, with a weight loss of only 3.4%. (3) The evaluation results indicate that the temperature substantially affects the insulation of the package. The lifetime of the package decreases by approximately 60% for every 10℃ increase in operating temperature.
王伟, 李贝, 王健, 任瀚文, 李庆民. 基于热解动力学的有机硅凝胶封装绝缘剩余寿命评估方法[J]. 电工技术学报, 0, (): 2492929-2492929.
Wang Wei, Li Bei, Wang Jian, Ren Hanwen, Li Qingmin. Remaining Life Assessment of Silicone Gel Package Insulation Based on Pyrolysis Kinetics. Transactions of China Electrotechnical Society, 0, (): 2492929-2492929.
[1] 王来利, 赵成, 张彤宇, 等. 碳化硅功率模块封装技术综述[J]. 电工技术学报, 2023, 38(18): 4947-4962.
Wang Laili, Zhao Cheng, Zhang Tongyu, et al.Review of packaging technology for silicon carbide power modules[J]. Transactions of China Electrotechnical Society, 2023, 38(18): 4947-4962.
[2] Abuelnaga A, Narimani M, Bahman A S.A review on IGBT module failure modes and lifetime testing[J]. IEEE Access, 2021, 9: 9643-9663.
[3] 何东欣, 张涛, 陈晓光, 等. 脉冲电压下电力电子装备绝缘电荷特性研究综述[J]. 电工技术学报, 2021, 36(22): 4795-4808.
He Dongxin, Zhang Tao, Chen Xiaoguang, et al.Research overview on charge characteristics of power electronic equipment insulation under the pulse voltage[J]. Transactions of China Electrotechnical Society, 2021, 36(22): 4795-4808.
[4] 何东欣, 魏君宇, 王婉君, 等. 界面缺陷及老化状态下电力电子器件封装绝缘应力波检测与分析[J]. 电工技术学报, 2023, 38(3): 610-621.
He Dongxin, Wei Junyu, Wang Wanjun, et al.Detection and analysis of stress wave in power electronic device packaging insulation under interface defects and aging conditions[J]. Transactions of China Electrotechnical Society, 2023, 38(3): 610-621.
[5] 王威望, 李睿喆, 何杰峰, 等. 快速陡脉冲重复电场下高频变压器绝缘介质损耗与冲击能量积聚特性[J]. 电工技术学报, 2023, 38(5): 1206-1216.
Wang Weiwang, Li Ruizhe, He Jiefeng, et al.Dielectric loss and impact energy accumulation of high frequency transformer insulation under rapidly repetitive pulsed voltages[J]. Transactions of China Electrotechnical Society, 2023, 38(5): 1206-1216.
[6] 李俊杰, 梅云辉, 梁玉, 等. 功率器件高电压封装用复合电介质灌封材料研究[J]. 电工技术学报, 2022, 37(3): 786-792.
Li Junjie, Mei Yunhui, Liang Yu, et al.Study on composite dielectric encapsulation materials for high voltage power device packaging[J]. Transactions of China Electrotechnical Society, 2022, 37(3): 786-792.
[7] 盛况, 董泽政, 吴新科. 碳化硅功率器件封装关键技术综述及展望[J]. 中国电机工程学报, 2019, 39(19): 5576-5584.
Sheng Kuang, Dong Zezheng, Wu Xinke.Review and prospect of key packaging technologies for silicon carbide power devices[J]. Proceedings of the CSEE, 2019, 39(19): 5576-5584.
[8] 陈庆国, 尚南强, 魏昕喆. 热老化对液体硅橡胶材料介电性能及力学特性的影响研究[J]. 电机与控制学报, 2020, 24(4): 141-148.
Chen Qingguo, Shang Nanqiang, Wei Xinzhe.Influence of thermal oxygen aging on dielectric and mechanical properties of liquid silicone rubber[J]. Electric Machines and Control, 2020, 24(4): 141-148.
[9] Arumugam S, Gorchakov S, Schoenemann T.Dielectric and partial discharge investigations on high power insulated gate bipolar transistor modules[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2015, 22(4): 1997-2007.
[10] Ghassemi M.PD measurements, failure analysis, and control in high-power IGBT modules[J]. High Voltage, 2018, 3(3): 170-178.
[11] Fu Pengyu, Zhao Zhibin, Cui Xiang, et al.Partial discharge measurement and analysis in high voltage IGBT modules under DC voltage[J]. CSEE Journal of Power and Energy Systems, 2018, 4(4): 513-523.
[12] 李凯, 赵争鸣, 袁立强, 等. 面向交直流混合配电系统的多端口电力电子变压器研究综述[J]. 高电压技术, 2021, 47(4): 1233-1250.
Li Kai, Zhao Zhengming, Yuan Liqiang, et al.Overview on research of multi-port power electronic transformer oriented for AC/DC hybrid distribution grid[J]. High Voltage Engineering, 2021, 47(4): 1233-1250.
[13] Dakin T W.Electrical insulation deterioration treated as a chemical rate phenomenon[J]. Transactions of the American Institute of Electrical Engineers, 1948, 67(1): 113-122.
[14] 任鹏, 李庆民, 彭鹏, 等. 基于热解动力学状态参量的GIS盆式绝缘子剩余寿命预测方法[J]. 中国电机工程学报, 2019, 39(22): 6774-6782.
Ren Peng, Li Qingmin, Peng Peng, et al.Residual lifetime expectancy prediction of the GIS basin-type insulators based on thermal dynamics analysis[J]. Proceedings of the CSEE, 2019, 39(22): 6774-6782.
[15] Zhang Yingsuo, Bai Yi, Ma Yanxiu.Comparison of reliability of conventional and rapid aging methods for insulating materials[J]. IEEE Transactions on Electrical Insulation, 1992, 27(6): 1159-1165.
[16] 王鹏, 赵政嘉, 刘雪山, 等. 电力电子设备中的电气绝缘问题[J]. 高电压技术, 2018, 44(7): 2309-2322.
Wang Peng, Zhao Zhengjia, Liu Xueshan, et al.Electrical insulation problems in power electronics devices[J]. High Voltage Engineering, 2018, 44(7): 2309-2322.
[17] Ding Yi, Wang Yalin, Sun Hao, et al.High-temperature partial discharge characteristics of power module packaging insulation under square pulse with high dv/dt based on down-mixing method[J]. IEEE Transactions on Industrial Electronics, 2023, 70(7): 7334-7342.
[18] 任鹏, 李庆民, 刘红磊, 等. 求解聚合物绝缘热解反应活化能的改进算法[J]. 中国电机工程学报, 2020, 40(19): 6371-6379.
Ren Peng, Li Qingmin, Liu Honglei, et al.An improved algorithm to calculate the activation energy of pyrolysis reaction of polymer insulation[J]. Proceedings of the CSEE, 2020, 40(19): 6371-6379.
[19] 辛晓虎, 何金, 满玉岩, 等. GIS盆式绝缘子热解反应机理函数的通用表征模型与求解方法[J]. 高压电器, 2024, 60(3): 120-127.
Xin Xiaohu, He Jin, Man Yuyan, et al.General characterization model and solution methodology for pyrolysis reaction mechanism function of GIS insulating spacer[J]. High Voltage Apparatus, 2024, 60(3): 120-127.
[20] 刘刚, 刘斯亮, 金尚儿, 等. 基于理、化、电特性的110kV XLPE绝缘电缆剩余寿命的综合评估[J]. 电工技术学报, 2016, 31(12): 72-79, 107.
Liu Gang, Liu Siliang, Jin Shanger, et al.Comprehensive evaluation of remaining life of 110kV XLPE insulated cable based on physical, chemical and electrical properties[J]. Transactions of China Electrotechnical Society, 2016, 31(12): 72-79, 107.
[21] Arcenegui-Troya J, Sánchez-Jiménez P E, Perejón A, et al. Determination of the activation energy under isothermal conditions: revisited[J]. Journal of Thermal Analysis and Calorimetry, 2023, 148(4): 1679-1686.
[22] Urbanovici E, Popescu C, Segal E.On the accuracy of senum and Yang’s fourth degree rational approximation of the temperature integral[J]. Journal of Thermal Analysis and Calorimetry, 1999, 55(1): 325-327.
[23] 黄雷, 包广清, 陈俊全. 基于Levenberg-Marquardt算法的改进Preisach模型磁特性模拟与验证[J]. 中国电机工程学报, 2020, 40(18): 6006-6014.
Huang Lei, Bao Guangqing, Chen Junquan.Magnetic property simulation and verification with improved Preisach hysteresis model based on Levenberg-Marquardt algorithm[J]. Proceedings of the CSEE, 2020, 40(18): 6006-6014.
[24] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 电气绝缘材料耐热性第2部分:试验判断标准的选择: GB/T 11026.2—2012[S]. 北京: 中国标准出版社, 2013.
[25] 周远翔, 张征辉, 张云霄, 等. 热-力联合老化对硅橡胶交联网络及力学和耐电特性的影响[J]. 电工技术学报, 2022, 37(17): 4474-4486.
Zhou Yuanxiang, Zhang Zhenghui, Zhang Yunxiao, et al.The effect of combined thermal-mechanical aging on the cross-linking network and mechanical and electrical properties of silicone rubber[J]. Transactions of China Electrotechnical Society, 2022, 37(17): 4474-4486.
[26] Fang Weizhen, Zeng Xingrong, Lai Xuejun, et al.Thermal degradation mechanism of addition-cure liquid silicone rubber with urea-containing silane[J]. Thermochimica Acta, 2015, 605: 28-36.
[27] Chenoweth K, Cheung S, van Duin A C T, et al. Simulations on the thermal decomposition of a poly(dimethylsiloxane) polymer using the ReaxFF reactive force field[J]. Journal of the American Chemical Society, 2005, 127(19): 7192-7202.
[28] Wang Wei, Gong Yanfeng, Ren Hanwen, et al.High-temperature failure mechanism and lifetime assessment of silicone gel package insulation for high-power electronic devices based on pyrolysis kinetics[J]. IEEE Transactions on Industry Applications, 2024, 60(1): 1298-1309.
[29] International Electrotechnical Commission.Semiconductor devices-part 9: discrete devices-insulated-gate bipolar transistors (IGBTs): IEC 60747-9:2019[S]. IEC, 2019.
[30] 翁诗甫, 徐怡庄. 傅里叶变换红外光谱分析[M]. 3版. 北京: 化学工业出版社, 2016.