Compatibility Analysis of C4F7N/CO2 and Its Gas Byproducts with Epoxy Resin
Duan Junran1,2, Yan Xianglian3, Gao Keli3, Liu Wei4, Qin Minghui5, Han Dong1,2, Zhang Guoqiang1,2
1. Institute of Electrical Engineering Chinese Academy of Sciences Beijing 100190 China;
2. University of Chinese Academy of Sciences Beijing 100049 China;
3. China Electric Power Research Institute Beijing 100192 China;
4. Anhui Electric Power Research Institute of SGCC Hefei 230022 China;
5. CSG Smart Grid Electrical Technology Co. Ltd Hefei 230080 China
As a potential SF6 alternative, perfluoroisobutyronitrile (C4F7N) mixed gas-insulated electrical equipment is currently in the research and small-scale application stage. The compatibility of gas-solid materials is essential for long-term operation of gas-insulated electrical equipment. Taking Helium gas as the control group, this paper conducts thermal acceleration tests to assess the compatibility of Bisphenol-A epoxy resin under C4F7N/CO2 and its gas byproduct atmospheres to provide a reference for the application of C4F7N mixed gas in environmentally friendly gas-insulated electrical equipment.
Three atmospheres are established: Helium, C4F7N/CO2 mixture, C4F7N/CO2 and its gas byproducts. Herein, the C4F7N/CO2 and its gas byproducts are generated through repetitive 50 Hz AC breakdown discharge tests. Bisphenol-A epoxy resin is shaped into column and sheet samples. Compatibility thermal acceleration tests are conducted at 70 ℃ and 100 ℃ for 28 days in a high- low-temperature test chamber. The compatibility characteristics are evaluated from gas composition, solid surface morphology, solid surface chemical properties, and glass transition temperature using a gas chromatography-mass spectrometer (GC-MS), scanning electron microscope (SEM)/energy dispersive spectrometer (EDS), Fourier transform infrared spectroscopy (FIRT), and differential scanning calorimeter, respectively. According to the interface zone theory between doped particles α-Al2O3 and epoxy resin matrix, variations in the electrical properties of epoxy resin samples are analyzed.
GC-MS results show no new gases are generated in the atmospheres of C4F7N/CO2 mixture and C4F7N/CO2 and its gas byproducts. However, due to the adsorption of α-Al2O3 particles filled in epoxy resin samples, the content of CNCN in the C4F7N/CO2 and its gas byproduct atmosphere is significantly decreased. According to SEM/EDS detection, epoxy resin samples’ surface has slight corrosion under the C4F7N/CO2 and its gas byproduct atmosphere. During thermal acceleration tests, α-Al2O3 particles and agglomerates precipitate onto the surface and exhibit a loose state, resulting in a decrease in bonding degree between α-Al2O3 particles and the epoxy resin matrix. According to FTIR detection, there is no significant change in the surface elements of the epoxy resin samples. α-Al2O3 characteristic absorption peaks strengthen, while some epoxy resin distinct absorption peaks decrease. The glass transition temperature of the epoxy resin increases after compatibility thermal acceleration tests. The effects of C4F7N/CO2 and its gas byproducts on the surface resistivity, volume resistivity, and flashover voltage of epoxy resin samples are minor. In conclusion, C4F7N/CO2 and its gas byproducts are compatible with Bisphenol-A epoxy resin materials, and the gas-solid compatibility can meet the requirements for normal operation of gas-insulated electrical equipment.
段竣然, 颜湘莲, 高克利, 刘伟, 秦明辉, 韩冬, 张国强. C4F7N/CO2及其分解气体与环氧树脂的相容特性分析[J]. 电工技术学报, 0, (): 2492909-2492909.
Duan Junran, Yan Xianglian, Gao Keli, Liu Wei, Qin Minghui, Han Dong, Zhang Guoqiang. Compatibility Analysis of C4F7N/CO2 and Its Gas Byproducts with Epoxy Resin. Transactions of China Electrotechnical Society, 0, (): 2492909-2492909.
[1] Intergovernmental Panel on Climate Change. Climate Change 2021: The Physical Science Basis[M]. Cambridge: Cambridge University Press, 2021.
[2] 周朕蕊, 韩冬, 赵明月, 等. SF6替代气体分解特性的研究综述[J]. 电工技术学报, 2020, 35(23): 4998-5014.
Zhou Zhenrui, Han Dong, Zhao Mingyue, et al.Review on decomposition characteristics of SF6 alternative gases[J]. Transactions of China Electrotechnical Society, 2020, 35(23): 4998-5014.
[3] Kieffel Y, Biquez F.SF6 alternative development for high voltage switchgears[C]//2015 IEEE Electrical Insulation Conference (EIC), Seattle, WA, USA, 2015: 379-383.
[4] Maiss M, Steele L P, Francey R J, et al.Sulfur hexafluoride—a powerful new atmospheric tracer[J]. Atmospheric Environment, 1996, 30(10/11): 1621-1629.
[5] 逯思敏, 汤贝贝, 高克利, 等. 电晕放电下三氟甲基磺酰氟的分解特性与成因分析[J]. 高电压技术, 2023, 49(11): 4556-4562.
Lu Simin, Tang Beibei, Gao Keli, et al.Decomposition characteristics and by-product formation of trifluoromethyl sulfonyl fluoride under corona discharge[J]. High Voltage Engineering, 2023, 49(11): 4556-4562.
[6] Nechmi H E, Beroual A, Girodet A, et al.Fluoronitriles/CO2 gas mixture as promising substitute to SF6 for insulation in high voltage applications[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2016, 23(5): 2587-2593.
[7] Pohlin K, Kieffel Y, Owens J.Characteristics of fluoronitrile/CO2 mixture-an alternative to SF6[R]. Paris: CIGRE, 2016.
[8] 王浩, 颜湘莲, 韩冬, 等. C4F7N/CO2及其分解气体与橡胶密封材料的相容性实验[J]. 高电压技术, 2022, 48(7): 2625-2634.
Wang Hao, Yan Xianglian, Han Dong, et al.Experiments for compatibility characteristics of C4F7N/CO2 and its gas byproducts with commonly used rubber sealing materials[J]. High Voltage Engineering, 2022, 48(7): 2625-2634.
[9] 刘伟, 韩冬, 朱姗, 等. 典型放电缺陷下的C4F7N/CO2分解特性[J]. 高电压技术, 2023, 49(11): 4498-4506.
Liu Wei, Han Dong, Zhu Shan, et al.Decomposition characteristics of C4F7N/CO2 under typical discharge defects[J]. High Voltage Engineering, 2023, 49(11): 4498-4506.
[10] Kessler F, Sarfert-Gast W, Kuhlmann L, et al.Compatibility of a gaseous dielectric with Al, Ag, and Cu and gas-phase synthesis of a new N-acylamidine copper complex[J]. European Journal of Inorganic Chemistry, 2020, 2020(20): 1989-1994.
[11] Li Yi, Zhang Xiaoxing, Zhang Ji, et al.Thermal compatibility between perfluoroisobutyronitrile-CO2 gas mixture with copper and aluminum switchgear[J]. IEEE Access, 2019, 7: 19792-19800.
[12] Kessler F, Sarfert-Gast W, Ise M, et al.Interaction of low global warming potential gaseous dielectrics with materials of gas-insulated systems[C]//20th International Symposium on High Voltage Engineering, Buenos Aires, Argentinal, 2017: 144.
[13] 郑哲宇, 李涵, 周文俊, 等. 环保绝缘气体C3F7CN与密封材料三元乙丙橡胶的相容性研究[J]. 高电压技术, 2020, 46(1): 335-341.
Zheng Zheyu, Li Han, Zhou Wenjun, et al.Compatibility of eco-friendly insulating medium C3F7CN and sealing material EPDM[J]. High Voltage Engineering, 2020, 46(1): 335-341.
[14] Meyer F, Huguenot P, Kieffel Y, et al.Application of fluoronitrile/CO2/O2 mixtures in high voltage products to lower the environmental footprint[R]. Paris: CIGRE, 2018.
[15] 赵明月, 韩冬, 周朕蕊, 等. 活性氧化铝和分子筛对C3F7CN/CO2及其过热分解产物的吸附特性[J]. 电工技术学报, 2020, 35(1): 88-96.
Zhao Mingyue, Han Dong, Zhou Zhenrui, et al.Adsorption characteristics of activated alumina and molecular sieves for C3F7CN/CO2 and its decomposition by-products of overheating fault[J]. Transactions of China Electrotechnical Society, 2020, 35(1): 88-96.
[16] Yuan Ruijun, Li Han, Zhou Wenjun, et al.Study of compatibility between epoxy resin and C4F7N/CO2 based on thermal ageing[J]. IEEE Access, 2020, 8: 119544-119553.
[17] (德)赫尔曼·科赫. GIS(气体绝缘金属封闭开关设备)原理与应用[M]. 钟建英, 林莘, 张友鹏, 等译. 北京: 机械工业出版社, 2017.
[18] 吴鹏, 叶凡超, 李祎, 等. C4F7N/CO2/O2与三元乙丙橡胶的相容性及相互作用机理研究[J]. 电工技术学报, 2022, 37(13): 3393-3403.
Wu Peng, Ye Fanchao, Li Yi, et al.Compatibility and interaction mechanism between C4F7N/CO2/O2 and EPDM[J]. Transactions of China Electrotechnical Society, 2022, 37(13): 3393-3403.
[19] 吕浥尘, 郑宇, 朱太云, 等. 五种吸附剂与C4F7N气体及CF3SO2F气体的相容性试验研究[J]. 电工技术学报, 2023, 38(增刊1): 196-203.
Lü Yichen, Zheng Yu, Zhu Taiyun, et al.Experimental study on compatibility with C4F7N and CF3SO2F gases and five adsorbents[J]. Transactions of China Electrotechnical Society, 2023, 38(S1): 196-203.
[20] González M G, Cabanelas J C, Baselga J.Applications of FTIR on epoxy resins - identification, monitoring the curing process, phase separation and water uptake[M]//Theophanides T. Infrared Spectroscopy: Materials Science, Engineering and Technology. Rijeka: InTech, 2012: 261-284.
[21] 赵春芳, 尹正勇, 李波. α型氧化铝的微观结构对红外光谱图的影响[J]. 光谱实验室, 2007, 24(3): 341-344.
Zhao Chunfang, Yin Zhengyong, Li Bo.Effect of alpha type alumina microstructure on infrared spectra[J]. Chinese Journal of Spectroscopy Laboratory, 2007, 24(3): 341-344.
[22] 宋岩泽, 梁贵书, 冉慧娟, 等. 等离子体处理调控表面电导率提高环氧树脂绝缘性能的研究[J]. 电工技术学报, 2023, 38(15): 3984-3998.
Song Yanze, Liang Guishu, Ran Huijuan, et al.Study on improving insulation properties of epoxy resin by regulating surface conductivity by plasma treatment[J]. Transactions of China Electrotechnical Society, 2023, 38(15): 3984-3998.
[23] 曹春诚, 李文博, 程显, 等. 纳米Al2O3/环氧树脂复合材料微秒脉冲沿面闪络特性研究[J]. 高压电器, 2023, 59(6): 111-119.
Cao Chuncheng, Li Wenbo, Cheng Xian, et al.Study on surface flashover characteristic of nano-Al2O3/epoxy resin composites in microsecond pulse[J]. High Voltage Apparatus, 2023, 59(6): 111-119.
[24] Prashanth P A, Raveendra R S, Hari Krishna R, et al.Synthesis, characterizations, antibacterial and photoluminescence studies of solution combustion-derived α-Al2O3 nanoparticles[J]. Journal of Asian Ceramic Societies, 2015, 3(3): 345-351.
[25] 李盛涛, 谢东日, 闵道敏. 聚丙烯/Al2O3纳米复合介质直流击穿特性与电荷输运仿真研究[J]. 中国电机工程学报, 2019, 39(20): 6122-6130, 6193.
Li Shengtao, Xie Dongri, Min Daomin.Numerical simulation on space charge transport and DC breakdown properties of polypropylene/Al2O3 nanocomposites[J]. Proceedings of the CSEE, 2019, 39(20): 6122-6130, 6193.
[26] Tanaka T, Kozako M, Fuse N, et al.Proposal of a multi-core model for polymer nanocomposite dielectrics[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2005, 12(4): 669-681.