[1] 张血琴, 周志鹏, 郭裕钧, 等. 不同材质绝缘子污秽等级高光谱检测方法研究[J]. 电工技术学报, 2023, 38(7): 1946-1955.
Zhang Xueqin, Zhou Zhipeng, Guo Yujun, et al.Detection method of contamination grades of insulators with different materials based on hyperspectral technique[J]. Transactions of China Electrotechnical Society, 2023, 38(7): 1946-1955.
[2] 赵乐, 王先培, 姚鸿泰, 等. 基于可见光航拍图像的电力线提取算法综述[J]. 电网技术, 2021, 45(4): 1536-1546.
Zhao Le, Wang Xianpei, Yao Hongtai, et al.Survey of power line extraction methods based on visible light aerial image[J]. Power System Technology, 2021, 45(4): 1536-1546.
[3] 陈奎, 刘晓, 贾立娇, 等. 基于轻量化网络与增强多尺度特征融合的绝缘子缺陷检测[J]. 高电压技术, 2024, 50(3): 1289-1300.
Chen Kui, Liu Xiao, Jia Lijiao, et al.Insulator defect detection based on lightweight network and enhanced multi-scale feature fusion[J]. High Voltage Engineering, 2024, 50(3): 1289-1300.
[4] 苟军年, 杜愫愫, 王世铎, 等.轻量化特征融合的CenterNet输电线路绝缘子自爆检测[J/OL]. 北京航空航天大学学报, 2022: 1-13[2023-12-29]. https://doi.org/10.13700/j.bh.1001-5965.2022.0602.
Gou Junnian, Du Susu, Wang Shiduo, et al.Lightweight feature fusion CenterNet transmission line insulator self-explosion detection[J/OL]. Journal of Beijing University of Aeronautics and Astronautics, 2022: 1-13[2023-12-29]. https://doi.org/10.13700/j.bh.1001-5965.2022.0602.
[5] 翟永杰, 王迪, 赵振兵, 等. 基于空域形态一致性特征的绝缘子串定位方法[J]. 中国电机工程学报, 2017, 37(5): 1568-1578.
Zhai Yongjie, Wang Di, Zhao Zhenbing, et al.Insulator string location method based on spatial configuration consistency feature[J]. Proceedings of the CSEE, 2017, 37(5): 1568-1578.
[6] 刘洋, 陆倚鹏, 高嵩, 等. 边缘检测在盘形悬式瓷绝缘子串红外图像上的应用[J]. 电瓷避雷器, 2020(1): 198-203.
Liu Yang, Lu Yipeng, Gao Song, et al.Edge detection on infrared image of high voltage porcelain disc type suspension insulator strings[J]. Insulators and Surge Arresters, 2020(1): 198-203.
[7] 蒲天骄, 乔骥, 韩笑, 等. 人工智能技术在电力设备运维检修中的研究及应用[J]. 高电压技术, 2020, 46(2): 369-383.
Pu Tianjiao, Qiao Ji, Han Xiao, et al.Research and application of artificial intelligence in operation and maintenance for power equipment[J]. High Voltage Engineering, 2020, 46(2): 369-383.
[8] 王卓, 王玉静, 王庆岩, 等. 基于协同深度学习的二阶段绝缘子故障检测方法[J]. 电工技术学报, 2021, 36(17): 3594-3604.
Wang Zhuo, Wang Yujing, Wang Qingyan, et al.Two stage insulator fault detection method based on collaborative deep learning[J]. Transactions of China Electrotechnical Society, 2021, 36(17): 3594-3604.
[9] 张欣, 王红星, 陈玉权, 等. 基于改进Cascade R-CNN算法的多类型绝缘子缺陷图像联合检测[J]. 电瓷避雷器, 2022(1): 189-196.
Zhang Xin, Wang Hongxing, Chen Yuquan, et al.Multi-type insulator defect joint detection based on improved cascade R-CNN algorithm[J]. Insulators and Surge Arresters, 2022(1): 189-196.
[10] Ling Zenan, Zhang Dongxia, Qiu R C, et al.An accurate and real-time self-blast glass insulator location method based on faster R-CNN and U-net with aerial images[J]. CSEE Journal of Power and Energy Systems, 2019, 5(4): 474-482.
[11] 苟军年, 杜愫愫, 刘力. 基于改进掩膜区域卷积神经网络的输电线路绝缘子自爆检测[J]. 电工技术学报, 2023, 38(1): 47-59.
Gou Junnian, Du Susu, Liu Li.Transmission line insulator self-explosion detection based on improved mask region-convolutional neural network[J]. Transactions of China Electrotechnical Society, 2023, 38(1): 47-59.
[12] 李斌, 屈璐瑶, 朱新山, 等. 基于多尺度特征融合的绝缘子缺陷检测[J]. 电工技术学报, 2023, 38(1): 60-70.
Li Bin, Qu Luyao, Zhu Xinshan, et al.Insulator defect detection based on multi-scale feature fusion[J]. Transactions of China Electrotechnical Society, 2023, 38(1): 60-70.
[13] 宋立业, 刘帅, 王凯, 等. 基于改进EfficientDet的电网元件及缺陷识别方法[J]. 电工技术学报, 2022, 37(9): 2241-2251.
Song Liye, Liu Shuai, Wang Kai, et al.Identification method of power grid components and defects based on improved EfficientDet[J]. Transactions of China Electrotechnical Society, 2022, 37(9): 2241-2251.
[14] 王韵琳, 冯天波, 孙宁, 等. 融合注意力与多尺度特征的电力绝缘子缺陷检测方法[J/OL]. 高电压技术, 2023: 1-11[2024-01-22]. https://doi.org/10.13336/j.1003-6520.hve.20230993.
Wang Yunlin, Feng Tianbo, Sun Ning, et al. Defect detection method for power insulators based on attention and multi-scale context information[J/OL]. High Voltage Engineering, 2023: 1-11[2024-01-22]. https://doi.org/10.13336/j.1003-6520.hve.20230993.
[15] 汤璐, 王淑青, 王年涛, 等. 基于改进YOLOX网络的雾天绝缘子缺陷检测[J]. 高压电器, 2024, 60(3): 223-228.
Tang Lu, Wang Shuqing, Wang Niantao, et al.Insulator defect detection in foggy condition based on improved YOLOX network[J]. High Voltage Apparatus, 2024, 60(3): 223-228.
[16] 张烨, 李博涛, 尚景浩, 等. 基于多尺度卷积注意力机制的输电线路防振锤缺陷检测[J/OL]. 电工技术学报, 2023: 1-15[2023-12-28]. https://doi.org/10.19595/j.cnki.1000-6753.tces.231155.
Zhang Ye, Li Botao, Shang Jinghao, et al. Defect detection of transmission line damper based on multi-scale convolutional attention mechanism[J/OL]. Transactions of China Electrotechnical Society, 2023: 1-15[2023-12-28]. https://doi.org/10.19595/j.cnki.1000-6753.tces.231155.
[17] Zhao Yian, Lü Wenyu, Xu Shangliang, et al. DETRs beat YOLOs on real-time object detection[J/OL]. ArXiv, 2024: 2304.08069v3. https://doi.org/10.48550/arXiv.2304.08069.
[18] Zhang Jiangning, Li Xiangtai, Li Jian, et al.Rethinking mobile block for efficient attention-based models[C]//2023 IEEE/CVF International Conference on Computer Vision (ICCV), Paris, France, 2023: 1389-1400.
[19] Szegedy C, Vanhoucke V, Ioffe S, et al.Rethinking the inception architecture for computer vision[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 2016: 2818-2826.
[20] Howard A G, Zhu Menglong, Chen Bo, et al. MobileNets: efficient convolutional neural networks for mobile vision applications[J/OL]. ArXiv, 2017: 1704.04861. http://arxiv.org/abs/1704.04861v1.
[21] He Kaiming, Zhang Xiangyu, Ren Shaoqing, et al.Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 2016: 770-778.
[22] Sandler M, Howard A, Zhu Menglong, et al.MobileNetV2: inverted residuals and linear bottlenecks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, 2018: 4510-4520.
[23] Ma Ningning, Zhang Xiangyu, Zheng Haitao, et al.ShuffleNet V2: practical guidelines for efficient CNN architecture design[C]//Computer Vision-ECCV 2018: 15th European Conference, Munich, Germany, 2018: 122-138.
[24] Zheng Zhaohui, Wang Ping, Liu Wei, et al.Distance-IoU loss: faster and better learning for bounding box regression[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(7): 12993-13000.
[25] Tao Xian, Zhang Dapeng, Wang Zihao, et al.Detection of power line insulator defects using aerial images analyzed with convolutional neural networks[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 50(4): 1486-1498.
[26] Everingham M, Ali Eslami S M, Van Gool L, et al. The pascal visual object classes challenge: a retrospective[J]. International Journal of Computer Vision, 2015, 111(1): 98-136. |