Abstract:In electrostatic precipitators, changes in electrode structure can affect the distribution of flow fields, which are crucial for particle motion. In order to further improve the dust removal efficiency of electrostatic precipitators, this paper proposes a electrohydraulic field electrode structure. The influence of electrode structure on the electric field characteristics and electrohydraulic field inside the electrostatic precipitator is simulated and experimented and uses a combination of numerical simulation and experimental methods to study. This paper first establishes a numerical model using the simulation method of high-speed ion jet coupled electrohydraulic field. In this model, it assumes an initial wind speed in the electrohydraulic field control equations and only considers the area 1 mm around the discharge electrode as a high-speed ion jet source when studying the electrohydraulic field state. The perturbation of the electrohydraulic field caused by the ionic wind jet is then fit using a two-way coupling between the newly added high-speed ion jet source and the electrohydraulic field equations. The initial jet wind speed surrounding the discharge electrode is setted at 5.76 m/s, 10.82 m/s, 15.68 m/s, and 19.53 m/s when the voltage is 35 kV, 40 kV, 45 kV, and 50 kV, respectively, based on the actual wind speed measured in the experiment. The paper simultaneously used particle image velocimetry to measure the electrohydraulic state of two electrode structures at different voltages. The smoke with the main airflow flows directly to the camera shooting area, so that the laser source and the shooting surface perpendicular to use camera software to save photos, post-processing using Matlab software in the PIV module for the electrohydraulic field state analysis. Simulation and experimental results show that, the dislocation plate's space charge density is greater than that of the wire-plate type. At the T-shaped structure, the dislocation plate's electric field strength is four times greater than that of the wire-plate type. The corona currents of the dislocation plate and the wire-plate type structure are 12.8 μA and 6.7 μA, respectively, which are each 6.1 μA more than that of the wire-plate type. The average flow velocities of 1 cm in front of the dust collector plate at an intake wind speed of 0.9 m/s are 1.28 m/s for the wire-plate dust collector and 0.68 m/s for the dislocation plate dust collector. Likewise, as inlet wind speed rises, the effect of the dislocation plate's reduction in near-plate flow velocity also becomes increasingly clear. The electrohydraulic field distributions obtained from experiment and simulation are fairly similar when comparing the electrohydraulic field states at 40 kV for the dislocation plate and the wire-plate type voltages, respectively. The main conclusions of this paper are: (1) The dislocation plate type can increase the space charge density, electric field strength, and corona discharge strength in comparison to the wire-plate type. (2) From the standpoint of the electrohydraulic field, the dislocation plate arrangement can lengthen the duration that particles are retained in the dust collector and reduce the ionic wind's tendency to scrub the pole plate. (3) The high-speed ion jet linked electrohydraulic field simulation method yielded simulation data that was compatible with the experimental findings, demonstrating the technology's viability.
李庆, 郭朋朋, 武磊, 张银楠, 乔音音, 何寿杰. 电极结构对电除尘器内电流体场影响的实验与模拟研究[J]. 电工技术学报, 2024, 39(16): 5172-5181.
Li Qing, Guo Pengpeng, Wu Lei, Zhang Yinnan, Qiao Yinyin, He Shoujie. Experimental and Simulation Study on the Effect of Electrode Structure on the Electrohydraulic Field in Electrostatic Precipitators. Transactions of China Electrotechnical Society, 2024, 39(16): 5172-5181.
[1] 刘学军, 胡汉芳, 郦建国, 等. 2020年电除尘行业发展评述和展望[J]. 中国环保产业, 2021(3): 23-27. Liu Xuejun, Hu Hanfang, Li Jianguo, et al. Review and prospect of the development of electric precipitation industry in2020[J]. China Environmental Protection Industry, 2021(3): 23-27. [2] 翟美丹, 米俊锋, 马文鑫, 等. 静电除尘技术及其影响因素的发展现状[J]. 应用化工, 2021, 50(9): 2572-2577. Zhai Meidan, Mi Junfeng, Ma Wenxin, et al.The development of electrostatic dust removal technology and its influencing factors[J]. Applied Chemical Industry, 2021, 50(9): 2572-2577. [3] 张明, 李丁晨, 李传, 等. 离子风的应用研究进展[J]. 电工技术学报, 2021, 36(13): 2749-2766. Zhang Ming, Li Dingchen, Li Chuan, et al.Research progress in the application of ion wind[J]. Transactions of China Electrotechnical Society, 2021, 36(13): 2749-2766. [4] 庞海龙, 俞妍, 董中天, 等. 静电除尘效率的影响因素研究[J]. 高压电器, 2021, 57(9): 125-130. Pang Hailong, Yu Yan, Dong Zhongtian, et al.Study on the influence factors of efficiency of electrostatic precipitation[J]. High Voltage Apparatus, 2021, 57(9): 125-130. [5] 闫东杰, 张子昂, 李振强, 等. 基于PIV的电除尘器流场可视化实验研究进展[J]. 高电压技术, 2021, 47(9): 3325-3336. Yan Dongjie, Zhang Ziang, Li Zhenqiang, et al.Research progress in flow visualization experiment of electrostatic precipitator based on particle image velocimetry[J]. High Voltage Engineering, 2021, 47(9): 3325-3336. [6] 申南轩, 苏子寒, 张远航, 等. 湿度对悬浮液滴荷电特性及离子流场特性的影响[J]. 电工技术学报, 2022, 37(13): 3422-3430, 3452. Shen Nanxuan, Su Zihan, Zhang Yuanhang, et al.Influence of humidity on the charge characteristics of suspension droplets and the characteristics of ion flow field[J]. Transactions of China Electrotechnical Society, 2022, 37(13): 3422-3430, 3452. [7] 卢斌先, 岳战兵, 王宜静, 等. 椭球电极负电晕放电的数值仿真研究[J]. 电工技术学报, 2023, 38(13): 3379-3387. Lu Binxian, Yue Zhanbing, Wang Yijing, et al.Numerical simulation study on negative corona discharge of small ellipsoidal electrode[J]. Transactions of China Electrotechnical Society, 2023, 38(13): 3379-3387. [8] 袁均祥, 杨兰均, 张乔根, 等. 电极参数对尖-板电极空气放电离子风特性的影响[J]. 电工技术学报, 2010, 25(1): 24-29. Yuan Junxiang, Yang Lanjun, Zhang Qiaogen, et al.Ionic wind characteristic of tine-plat affected by electrode parameter from atmosphere discharge[J]. Transactions of China Electrotechnical Society, 2010, 25(1): 24-29. [9] Chen Bing, Guo Yongheng, Li Hongjiao, et al.Insights into the effect of the shape of collecting plates on particle precipitation processes in an electrostatic precipitator[J]. Journal of the Air & Waste Management Association, 2020, 70(9): 892-903. [10] 沈恒, 钟方川, 亢燕铭, 等. 两种实际板型下电除尘器中的电流体动力学流动[J]. 高电压技术, 2017, 43(2): 541-546. Shen Heng, Zhong Fangchuan, Kang Yanming, et al.Electrohydrodynamic flows in two real electrode geometry of electrostatic precipitator[J]. High Voltage Engineering, 2017, 43(2): 541-546. [11] Bacher C, Lebedynskyy V, Fischer S, et al.Discharge electrode geometry and energy efficiency in a one-stage wire-tube electrostatic precipitator operating at high concentrations of submicron liquid aerosol[J]. Environmental Technology, 2020, 41(16): 2096-2108. [12] 邓杰文, 李少华. 多场作用下电除尘器内电动流体运动特性分析[J]. 中国电机工程学报, 2018, 38(8): 2358-2366, 2545. Deng Jiewen, Li Shaohua.Study of electrofluid motion characteristics under the multi-field in electrostatic precipitator[J]. Proceedings of the CSEE, 2018, 38(8): 2358-2366, 2545. [13] Zheng Chenghang, Wu Zhicheng, Shen Zhiyang, et al.Particle capture in a high-temperature electrostatic precipitator with different electrode configurations[J]. Powder Technology, 2020, 372: 84-93. [14] Leonard G L, Mitchner M, Self S A.An experimental study of the electrohydrodynamic flow in electrostatic precipitators[J]. Journal of Fluid Mechanics, 1983, 127: 123-140. [15] Guo Jun, Ye Xinglian, Wang Shuai, et al.The influence of electrohydrodynamic secondary flow on the collection efficiency and deposition pattern in ESP[J]. Mathematical Problems in Engineering, 2019, 2019: 1-7. [16] 沈欣军, 曾宇翾, 郑钦臻, 等. 基于粒子成像测速法的正、负电晕放电下线-板式电除尘器内流场测试[J]. 高电压技术, 2014, 40(9): 2757-2763. Shen Xinjun, Zeng Yuxuan, Zheng Qinzhen, et al.Measurements of flow field in wire-plate electrostatic precipitator during positive or negative corona discharge using PIV method[J]. High Voltage Engineering, 2014, 40(9): 2757-2763. [17] Choi H Y, Park Y G, Ha M Y.Numerical simulation of the wavy collecting plate effects on the performance of an electrostatic precipitator[J]. Powder Technology, 2021, 382: 232-243. [18] 闫东杰, 贡浩, 张子昂, 等. 芒刺线-板式电除尘器内流场研究[J]. 中国电机工程学报, 2021, 41(19): 6707-6716. Yan Dongjie, Gong Hao, Zhang Ziang, et al.Study on the flow field of barb corona electrodes in ESP[J]. Proceedings of the CSEE, 2021, 41(19): 6707-6716. [19] 李庆, 侯雪超, 张文婷, 等. 电极结构对离子风流场影响的数值模拟[J]. 高电压技术, 2020, 46(12): 4334-4340. Li Qing, Hou Xuechao, Zhang Wenting, et al.Numerical simulation of influence of electrode structures on ion wind flow field[J]. High Voltage Engineering, 2020, 46(12): 4334-4340. [20] Feng Zhuangbo, Long Zhengwei, Adamiak K.Numerical simulation of electrohydrodynamic flow and vortex analysis in electrostatic precipitators[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2018, 25(2): 404-412. [21] Talaie M R.Mathematical modeling of wire-duct single-stage electrostatic precipitators[J]. Journal of Hazardous Materials, 2005, 124(1/2/3): 44-52. [22] 龙正伟, 冯壮波, 姚强. 静电除尘器数值模拟[J]. 化工学报, 2012, 63(11): 3393-3401. Long Zhengwei, Feng Zhuangbo, Yao Qiang.Numerical modeling of electrostatic precipitator[J]. CIESC Journal, 2012, 63(11): 3393-3401. [23] 李庆, 杨振亚, 王巧艳, 等. 线板放电电流体的实验研究与数值模拟[J]. 科学通报, 2011, 56(35): 2947-2951. Li Qing, Yang Zhenya, Wang Qiaoyan, et al.Experimental research and numerical simulation of electro-hydrodynamic in wire-plate discharge channel[J]. Chinese Science Bulletin, 2011, 56(35): 2947-2951. [24] 李庆, 李海凤, 孙晓荣, 等. 电晕放电电流体状态实验研究与数值模拟[J]. 高电压技术, 2010, 36(11): 2739-2744. Li Qing, Li Haifeng, Sun Xiaorong, et al.Experimental research and numerical simulation of electro-hydrodynamic in corona discharge[J]. High Voltage Engineering, 2010, 36(11): 2739-2744. [25] 李庆, 刘晓娃, 剧晓晨, 等. 针-板电极负电晕放电下离子分布状态的影响因素[J]. 高电压技术, 2017, 43(5): 1700-1706. Li Qing, Liu Xiaowa, Ju Xiaochen, et al.Influencing factors of the ions distribution under the needle to plate negative corona discharge[J]. High Voltage Engineering, 2017, 43(5): 1700-1706. [26] Penney G W, Matick R E.Potentials in D-C corona fields[J]. Transactions of the American Institute of Electrical Engineers, Part I: Communication and Electronics, 1960, 79(2): 91-99. [27] de Oliveira A E, Guerra V G. Influence of particle concentration and residence time on the efficiency of nanoparticulate collection by electrostatic precipitation[J]. Journal of Electrostatics, 2018, 96: 1-9.