Abstract:High-precision displacement sensors are required to implement the displacement closed-loop control in the traditional bearingless permanent magnet slice motor system. Currently, bearingless permanent magnet slice motors are controlled by eddy current sensors. However, the increasing volume of the sensor probe can expand the bearingless motor's axial and radial dimensions. Due to their large volume, eddy current sensors cannot meet the accuracy and integration requirements of artificial heart pumps. According to the idea of Hall integrated dual-use, the angle and radial displacement can be identified simultaneously, reducing the volume of the artificial heart pump significantly. As the Hall signal provides angle and radial displacement information, the health status of Hall directly influences the bearingless motor's suspension reliability. In the case of a single Hall fault, taking Hall1 as an example, considering the third harmonic caused by the permanent magnet processing, the third harmonic coefficient is calculated. The expression of a single Hall output signal considering permanent magnet excitation, torque current excitation, and suspension current excitation is derived. The Hall flux linkage reconstruction algorithm is proposed using the remaining five non-faulty Hall output signals. The reconstructed flux linkage expression is obtained by subtracting the non-eccentric basic flux linkage from twice the Hall output signal opposite to the mechanical position of the faulty Hall. The reconstructed flux linkage is compensated for the third harmonic, and the Hall signal correction table under Hall faults is constructed. The radial displacement is calculated using the negative sequence demodulation method. The three-phase radial displacement flux linkage is projected onto a pair of poles to synthesize the magnetic field, which decouples the angle and radial displacement. Accordingly, the radial displacement information is obtained. The platform of the bearingless permanent magnet slice motor is built, and the stable suspension of the bearingless motor under Hall1 faults is realized in static, steady state, and transient states. The radial displacement fluctuation of the static suspension is no more than 80 mm. The angle identification error of the steady state suspension is no more than 9° at 5 000 r/min, the α radial displacement error does not exceed 0.06 mm, and the β radial displacement error does not exceed 0.08 mm. When the speed changes from 0 to 3 000 r/min to 6 000 r/min, the switching dynamic time of the transient suspension speed is less than 1 s, and the speed has no apparent jitter. The following conclusions can be drawn. (1) The reduction of Hall output signals leads to the lack of one-phase radial displacement flux linkage in displacement calculation under single Hall faults, resulting in system angle and radial displacement information recoupling. (2) The Hall flux linkage reconstruction algorithm reconstructs and compensates the third harmonic for the Hall flux linkage under single Hall faults, improving the reliability and fault tolerance of the bearingless motor. It can be used as a fault-tolerant scheme of artificial heart pumps to improve extracorporeal blood circulation stability.
赵攀, 王宇, 张艺. 单霍尔故障下无轴承永磁薄片电机径向位移容错检测[J]. 电工技术学报, 2024, 39(15): 4794-4805.
Zhao Pan, Wang Yu, Zhang Yi. Fault Tolerant Detection of Radial Displacement of Bearingless Permanent Magnet Slice Motor under Single Hall Fault. Transactions of China Electrotechnical Society, 2024, 39(15): 4794-4805.
[1] 禹春敏, 邓智泉, 梅磊, 等. 基于精确磁路的新型混合型轴向-径向磁悬浮轴承研究[J]. 电工技术学报, 2021, 36(6): 1219-1228. Yu Chunmin, Deng Zhiquan, Mei Lei, et al.Research of new hybrid axial-radial magnetic bearing based on accurate magnetic circuit[J]. Transactions of China Electrotechnical Society, 2021, 36(6): 1219-1228. [2] 李志, 苏振中, 胡靖华, 等. 磁轴承复合位移传感设计与实验研究[J]. 电工技术学报, 2021, 36(7): 1425-1433. Li Zhi, Su Zhenzhong, Hu Jinghua, et al.Design and experimental research of magnetic bearing compound displacement sensor[J]. Transactions of China Elec- trotechnical Society, 2021, 36(7): 1425-1433. [3] 周天豪, 陈磊, 祝长生, 等. 基于自适应变步长最小均方算法的磁悬浮高速电机不平衡补偿[J]. 电工技术学报, 2020, 35(9): 1900-1911. Zhou Tianhao, Chen Lei, Zhu Changsheng, et al.Unbalance compensation for magnetically levitated high-speed motors based on adaptive variable step size least mean square algorithm[J]. Transactions of China Electrotechnical Society, 2020, 35(9): 1900-1911. [4] Ronco C, Navalesi P, Vincent J L.Coronavirus epidemic: preparing for extracorporeal organ support in intensive care[J]. The Lancet Respiratory Medicine, 2020, 8(3): 240-241. [5] 刘鑫, 曲洪一, 王聪, 等. 第3代人工心脏泵研究进展及应用[J]. 中国生物医学工程学报, 2022, 41(3): 339-350. Liu Xin, Qu Hongyi, Wang Cong, et al.Research progress and application of the third generation of artificial heart pump[J]. Chinese Journal of Biomedical Engineering, 2022, 41(3): 339-350. [6] 岳盛奏, 王晓琳, 邓智泉, 等. 单绕组无轴承永磁薄片电机缺相运行特性分析[J]. 中国电机工程学报, 2010, 30(12): 69-75. Yue Shengzou, Wang Xiaolin, Deng Zhiquan, et al.Operation characteristics analysis of the single winding bearingless PM slice motor at lacking- phase[J]. Proceedings of the CSEE, 2010, 30(12): 69-75. [7] Wang Xiaolin, Zhong Qingchang, Deng Zhiquan, et al.Fault-tolerant control of multi-phase permanent magnetic bearing-less motors[C]//The XIX Inter- national Conference on Electrical Machines-ICEM, Rome, Italy, 2010: 1-6. [8] Wang Xiaolin, Zhong Qingchang, Deng Zhiquan, et al.Current-controlled multiphase slice permanent mag- netic bearingless motors with open-circuited phases: fault-tolerant controllability and its verification[J]. IEEE Transactions on Industrial Electronics, 2012, 59(5): 2059-2072. [9] 盛旺, 王晓琳, 邓智泉, 等. 单绕组无轴承永磁薄片电机短路容错运行[J]. 中国电机工程学报, 2011, 31(6): 66-72. Sheng Wang, Wang Xiaolin, Deng Zhiquan, et al.Operation of single winding bearingless PM slice motor at short-circuit in fault-tolerance[J]. Pro- ceedings of the CSEE, 2011, 31(6): 66-72. [10] 王晓琳, 盛旺, 邓智泉, 等. 多相无轴承永磁薄片电机故障运行特性分析[J]. 中国电机工程学报, 2011, 31(18): 73-78. Wang Xiaolin, Sheng Wang, Deng Zhiquan, et al.Operating characteristics analysis of multi-phase bearingless permanent magnet slice motors with faulty phases[J]. Proceedings of the CSEE, 2011, 31(18): 73-78. [11] 任新宇, 王晓琳. H桥驱动下的单绕组无轴承薄片电机功率系统故障分析及容错控制[J]. 中国电机工程学报, 2012, 32(15): 74-83, 12. Ren Xinyu, Wang Xiaolin.Power inverter fault analysis and fault-tolerant control of a single winding bearingless slice motor driven by H-bridge[J]. Pro- ceedings of the CSEE, 2012, 32(15): 74-83, 12. [12] Samoylenko N, Han Qiang, Jatskevich J.Dynamic performance of brushless DC motors with unbalanced Hall sensors[J]. IEEE Transactions on Energy Con- version, 2008, 23(3): 752-763. [13] 严乐阳, 叶佩青, 张勇, 等. 圆筒型永磁直线同步电机用线性霍尔位置检测的误差补偿[J]. 电工技术学报, 2017, 32(5): 26-32. Yan Leyang, Ye Peiqing, Zhang Yong, et al.Error compensation of linear Hall based position detection for tubular permanent magnetic linear synchronous motor[J]. Transactions of China Electrotechnical Society, 2017, 32(5): 26-32. [14] Beccue P B, Pekarek S D, Deken B J, et al.Compensation for asymmetries and misalignment in a Hall-effect position observer used in PMSM torque- ripple control[J]. IEEE Transactions on Industry Applications, 2007, 43(2): 560-570. [15] 王晓琳, 刘思豪, 顾聪. 基于线性霍尔误差补偿的高速永磁同步电机转子位置检测技术[J]. 电机与控制学报, 2021, 25(7): 11-19. Wang Xiaolin, Liu Sihao, Gu Cong.Rotor position detection for permanent magnetic synchronous motor based on error compensation of linear Hall sensors[J]. Electric Machines and Control, 2021, 25(7): 11-19. [16] 董亮辉, 刘景林. 霍尔传感器故障下的永磁无刷电机容错控制及其动态性能研究[J]. 中国电机工程学报, 2017, 37(12): 3602-3611, 3689. Dong Lianghui, Liu Jinglin.Research on the fault tolerant control and its dynamic performance of brushless permanent magnet motor with faults in Hall sensor[J]. Proceedings of the CSEE, 2017, 37(12): 3602-3611, 3689. [17] Tashakori A, Ektesabi M.A simple fault tolerant control system for Hall effect sensors failure of BLDC motor[C]//2013 IEEE 8th Conference on Industrial Electronics and Applications (ICIEA), Melbourne, VIC, Australia, 2013: 1011-1016. [18] Dong Lianghui, Huang Yingwei, Jatskevich J, et al.Improved fault-tolerant control for brushless per- manent magnet motor drives with defective Hall sensors[J]. IEEE Transactions on Energy Conversion, 2016, 31(2): 789-799. [19] 阎鹏宇, 朱志宇, 张明明, 等. 霍尔传感器故障下的永磁同步电机容错控制[J]. 电力电子技术, 2020, 54(7): 45-49. Yan Pengyu, Zhu Zhiyu, Zhang Mingming, et al.Fault-tolerant control of permanent magnet syn- chronous motors with Hall sensor failure[J]. Power Electronics, 2020, 54(7): 45-49. [20] 胡烽, 孙宏博, 蒋栋, 等. 基于四相全桥的磁悬浮轴承开关器件开路故障容错控制策略[J]. 电工技术学报, 2022, 37(9): 2295-2305, 2340. Hu Feng, Sun Hongbo, Jiang Dong, et al.Fault- tolerant strategy of four-phase full-leg for active magnetic bearing in case of open circuit fault of switching device[J]. Transactions of China Elec- trotechnical Society, 2022, 37(9): 2295-2305, 2340. [21] 杨帆, 袁野, 祝贵, 等. 12/14磁悬浮开关磁阻电机悬浮力全周期模型构建[J]. 电工技术学报, 2023, 38(2): 330-339. Yang Fan, Yuan Ye, Zhu Gui, et al.Suspension force modeling for 12/14 bearingless switched reluctance motor considering flux multi teeth hinge[J]. Transa- ctions of China Electrotechnical Society, 2023, 38(2): 330-339. [22] Chiba A, Fukao T, Ichikawa O, et al.Magnetic bearings and bearingless drives[M]. New York: Elsevier, 2005. [23] 张艺, 王宇, 张成糕. 基于霍尔负序解调法的无轴承永磁薄片电机径向位移检测方法[J]. 中国电机工程学报, 2023, 43(19): 7659-7669. Zhang Yi, Wang Yu, Zhang Chenggao.Radical dis- placement detection method based on negative sequence demodulation method on Hall signals of bearingless permanent magnet slice motor[J]. Pro- ceedings of the CSEE, 2023, 43(19): 7659-7669. [24] 王晓琳, 石滕瑞, 鲍旭聪. 基于频域拟合的无轴承永磁薄片电机径向悬浮力建模分析[J]. 电工技术学报, 2023, 38(2): 317-329. Wang Xiaolin, Shi Tengrui, Bao Xucong.Accurate mathematical modeling of radial suspension force on bearingless permanent magnet slice motors based on frequency domain fitting[J]. Transactions of China Electrotechnical Society, 2023, 38(2): 317-329. [25] 刘刚, 肖烨然, 宋欣达. 永磁同步电机用线性霍尔位置检测的误差补偿[J]. 电机与控制学报, 2014, 18(8): 36-42, 54. Liu Gang, Xiao Yeran, Song Xinda.Error com- pensation of rotor position detection for permanent magnetic synchronous motor based on linear Hall sensors[J]. Electric Machines and Control, 2014, 18(8): 36-42, 54. [26] Chen Yao, Zhou Yangzhong.Radial displacement sensorless control of bearingless flux-switching permanent magnet machines based on difference of symmetric-winding flux linkages[J]. IEEE Transa- ctions on Industrial Electronics, 2021, 68(9): 7793-7803.