Abstract:In solar-storage inverters, the photovoltaic unit, the energy storage unit on the DC side, and the inverter unit on the AC side are interconnected through a DC bus. Typically, the DC bus serves to isolate the operation of each module. However, as the bus capacity reduces, the inter-module coupling effect emerges, leading to oscillations in the bus voltage and current. Assessing the stability of the multi-module interconnected coupling system, identifying the resonance source, and eliminating oscillations have become major concerns. The DC bus stability issue in solar-storage inverters can be equated to the stability problem of a multi-module parallel model. In previous studies, the “impedance ratio” method was commonly used to assess the stability of multi-module interactive systems. However, the impedance ratio method can only assess the stability of interactions between two-port sources. When dealing with multi-module interactions, the system is usually divided into “source” and “load” components. This approach should be more conducive to identifying and attributing resonance causes within specific units. Therefore, this paper proposes a combined impedance ratio stability criterion based on the stable operation of single modules. It deduces that the number of poles in the right half-plane of the parallel impedance of each module impedance in the system determines the stability of the DC parallel system. Accordingly, the system stability criterion is transformed into the sum of the impedance ratios of each unit. This mathematical form is beneficial for assessing system stability using the traditional Bode diagram stability method. The source of system resonance is determined by comparing the contribution of the amplitude-frequency gain of each unit's impedance ratio Bode diagram to the system's combined impedance ratio at the resonance frequency. By impedance modeling for each unit of the solar-storage inverter and analyzing the impedance ratio Bode diagram, it is concluded that the energy storage unit and its rapid change of the impedance characteristics in high frequency can cause system resonance. In contrast, the photovoltaic unit has an equivalent input internal resistance that suppresses the change in its impedance characteristics, remaining resistive and inductive at all times. Subsequently, a notch filter is incorporated into the energy storage unit's controller to reduce the resonance peak of the open-loop transfer function in high frequency and enhance the output impedance characteristics. Finally, the developed model is validated through simulation and experimentation. The cause of system resonance can be accurately analyzed and identified through comparative analysis and applying the combined impedance ratio criterion. The control delay of the energy storage unit indeed causes the mutual resonance problem of the photovoltaic storage inverter. The photovoltaic unit has a natural equivalent internal resistance that contributes very little to the resonance peak and is not responsible for the system resonance. Simulation and experimental results demonstrate the correctness of the model and the effectiveness of the proposed strategy.
李达, 张涛. 基于阻抗法的光储逆变器交直流建模及耦合分析[J]. 电工技术学报, 2024, 39(10): 3038-3048.
Li Da, Zhang Tao. Modeling and Coupling Analysis of DC and Grid Side of Solar-Storage Inverter Based on Impedance Method. Transactions of China Electrotechnical Society, 2024, 39(10): 3038-3048.
[1] 黄雨涵, 丁涛, 李雨婷, 等. 碳中和背景下能源低碳化技术综述及对新型电力系统发展的启示[J]. 中国电机工程学报, 2021, 41(增刊1): 28-51. Huang Yuhan, Ding Tao, Li Yuting, et al.Decar- bonization technologies and inspirations for the development of novel power systems in the context of carbon neutrality[J]. Proceedings of the CSEE, 2021, 41(S1): 28-51. [2] 叶晨, 王蓓蓓, 薛必克, 等. 考虑超售的共享分布式光储混合运营模式协同策略研究[J]. 电工技术学报, 2022, 37(7): 1836-1846. Ye Chen, Wang Beibei, Xue Bike, et al.Study on the coordination strategy of sharing distributed photo- voltaic energy storage hybrid operation mode con- sidering overselling[J]. Transactions of China Elec- trotechnical Society, 2022, 37(7): 1836-1846. [3] 刘建国. 乌克兰危机背景下全球能源发展新特征分析[J]. 国际石油经济, 2022, 30(11): 57-63. Liu Jianguo.New characteristics of global energy development under the Ukraine issue[J]. International petroleum economy, 2022, 30(11): 57-63. [4] 张权宝, 唐芬, 陶庭欢, 等. 光储一体化变流器并联系统的功率协调控制[J]. 电力电子技术, 2022, 56(9): 70-73. Zhang Quanbao, Tang Fen, Tao Tinghuan, et al.Power coordinated control of PV-storage integrated converter parallel system[J]. Power Electronics, 2022, 56(9): 70-73. [5] Xu Zhongyan, Tao Shengyu, Fan Hongtao, et al.Power limit control strategy for household photo- voltaic and energy storage inverter[J]. Electronics, 2021, 10(14): 1704. [6] 朱晓荣, 李铮, 孟凡奇. 基于不同网架结构的直流微电网稳定性分析[J]. 电工技术学报, 2021, 36(1): 166-178. Zhu Xiaorong, Li Zheng, Meng Fanqi.Stability analysis of DC microgrid based on different grid structures[J]. Transactions of China Electrotechnical Society, 2021, 36(1): 166-178. [7] 彭方成, 范学鑫, 王瑞田, 等. 大容量DC-DC 变流器输出阻抗特性分析及应用[J]. 电工技术学报, 2021, 36(16): 3422-3432. Peng Fangcheng, Fan Xuexin, Wang Ruitian, et al.Analysis and application of output impedance characteristics of high-capacity DC-DC converter[J]. Transactions of China Electrotechnical Society, 2021, 36(16): 3422-3432. [8] 姚雨迎, 张东来, 徐殿国. 级联式DC/DC变换器输出阻抗的优化设计与稳定性[J]. 电工技术学报, 2009, 24(3): 147-152. Yao Yuying, Zhang Donglai, Xu Dianguo.Output impedance optimization and stability for cascade DC/DC converter[J]. Transactions of China Electro- technical Society, 2009, 24(3): 147-152. [9] 王晴, 刘增, 韩鹏程, 等. 基于变流器输出阻抗的直流微电网下垂并联系统振荡机理与稳定边界分析[J]. 电工技术学报, 2023, 38(8): 2148-2161. Wang Qing, Liu Zeng, Han Pengcheng, et al.Analysis of oscillation mechanism and stability boundary of droop-controlled parallel converters based on output impedances of individual converters in DC micro- grids[J]. Transactions of China Electrotechnical Society, 2023, 38(8): 2148-2161. [10] Sun Jian.Impedance-based stability criterion for grid- connected inverters[J]. IEEE Transactions on Power Electronics, 2011, 26(11): 3075-3078. [11] 汪春江, 孙建军, 宫金武, 等. 并网逆变器与电网阻抗交互失稳机理及阻尼策略[J]. 电工技术学报, 2020, 35(增刊2): 503-511. Wang Chunjiang, Sun Jianjun, Gong Jinwu, et al.Mechanism and damping strategy of interactive instability between grid-connected inverter and grid impedance[J]. Transactions of China Electrotechnical Society, 2020, 35(S2): 503-511. [12] 曾锋, 李崇涛, 舒进, 等. 基于阻抗法的稳定性判据论证及其适用性分析[J]. 电力系统自动化, 2021, 45(8): 146-154. Zeng Feng, Li Chongtao, Shu Jin, et al.Demon- stration of stability criterion based on impedance method and analysis on its applicability[J]. Auto- mation of Electric Power Systems, 2021, 45(8): 146-154. [13] 李杨, 帅智康, 方俊彬, 等. 基于阻抗测量的多逆变器系统稳定性校验方法[J]. 电力系统自动化, 2021, 45(11): 95-101. Li Yang, Shuai Zhikang, Fang Junbin, et al.Stability check method for multi-inverter system based on impedance measurement[J]. Automation of Electric Power Systems, 2021, 45(11): 95-101. [14] 年珩, 杨军, 陈亮, 等. 交直流混合供电系统直流侧阻抗建模及稳定性分析[J]. 高电压技术, 2020, 46(10): 3477-3490. Nian Heng, Yang Jun, Chen Liang, et al.DC impedance modeling and stability analysis of AC/DC hybrid power supply system[J]. High Voltage Engineering, 2020, 46(10): 3477-3490. [15] 黄旭程, 刘亚丽, 陈燕东, 等. 直流电网阻抗建模与振荡机理及稳定控制方法[J]. 电力系统保护与控制, 2020, 48(7): 108-117. Huang Xucheng, Liu Yali, Chen Yandong, et al.Impedance-based modeling, stability analysis and virtual damping approach in DC grid[J]. Power System Protection and Control, 2020, 48(7): 108-117. [16] 李霞林, 郭力, 黄迪, 等. 直流配电网运行控制关键技术研究综述[J]. 高电压技术, 2019, 45(10): 3039-3049. Li Xialin, Guo Li, Huang Di, et al.Research review on operation and control of DC distribution net- works[J]. High Voltage Engineering, 2019, 45(10): 3039-3049. [17] 辛焕海, 章枫, 于洋, 等. 多馈入直流系统广义短路比: 定义与理论分析[J]. 中国电机工程学报, 2016, 36(3): 633-647. Xin Huanhai, Zhang Feng, Yu Yang, et al.Gen- eralized short circuit ratio for multi-infeed DC systems: definition and theoretical analysis[J]. Proceedings of the CSEE, 2016, 36(3): 633-647. [18] 辛焕海, 甘德强, 鞠平. 多馈入电力系统广义短路比: 多样化新能源场景[J]. 中国电机工程学报, 2020, 40(17): 5516-5527. Xin Huanhai, Gan Deqiang, Ju Ping.Generalized short circuit ratio of power systems with multiple power electronic devices: analysis for various renewable power generations[J]. Proceedings of the CSEE, 2020, 40(17): 5516-5527. [19] 张学, 裴玮, 邓卫, 等. 含恒功率负载的交直流混联配电系统稳定性分析[J]. 中国电机工程学报, 2017, 37(19): 5572-5582, 5834. Zhang Xue, Pei Wei, Deng Wei, et al.Stability analysis of AC/DC hybrid distribution system with constant power loads[J]. Proceedings of the CSEE, 2017, 37(19): 5572-5582, 5834. [20] Wildrick C M, Lee F C, Cho B H, et al.A method of defining the load impedance specification for a stable distributed power system[J]. IEEE Transactions on Power Electronics, 1995, 10(3): 280-285. [21] Feng Xiaogang, Liu Jinjun, Lee F C.Impedance specifications for stable DC distributed power systems[J]. IEEE Transactions on Power Electronics, 2002, 17(2): 157-162. [22] 刘康礼. 弱电网条件下多逆变器并联控制关键技术研究[D]. 南京: 东南大学, 2017. [23] 卢浩, 朱琳, 赵学深, 等. 基于负载变流器控制带宽的直流系统稳定性分析[J]. 电力系统自动化, 2023, 47(3): 153-160. Lu Hao, Zhu Lin, Zhao Xueshen, et al.Stability analysis of dc system based on control bandwidth of load converter[J]. Automation of Electric Power Systems, 2023, 47(3): 153-160. [24] 耿乙文, 田芳芳, 孙帅, 等. 一种基于虚拟同步发电机的电流谐波抑制方法[J]. 电工技术学报, 2018, 33(5): 1040-1050. Geng Yiwen, Tian Fangfang, Sun Shuai, et al.A method of current harmonics suppression based on VSG[J]. Transactions of China Electrotechnical Society, 2018, 33(5): 1040-1050. [25] 郑堃, 周林, 龙贵欣, 等. 一种针对数字控制下光伏并网逆变器的陷波器滞后补偿方法[J]. 中国电机工程学报, 2019, 39(6): 1749-1757, 1871. Zheng Kun, Zhou Lin, Long Guixin, et al.A lag compensation method based on Notch filter for PV grid-connected inverter under digital control[J]. Pro- ceedings of the CSEE, 2019, 39(6): 1749-1757, 1871. [26] 武龙星, 庞辉, 晋佳敏, 等. 基于电化学模型的锂离子电池荷电状态估计方法综述[J]. 电工技术学报, 2022, 37(7): 1703-1725. Wu Longxing, Pang Hui, Jin Jiamin, et al.A review of soc estimation methods for lithium-ion batteries based on electrochemical model[J]. Transactions of China Electrotechnical Society, 2022, 37(7): 1703-1725. [27] 徐健, 曹鑫, 郝振洋, 等. 基于电网谐波电压前馈的虚拟同步整流器电流谐波抑制方法[J]. 电工技术学报, 2022, 37(8): 2018-2029. Xu Jian, Cao Xin, Hao Zhenyang, et al.A harmonic- current suppression method for virtual synchronous rectifier based on feedforward of grid harmonic voltage[J]. Transactions of China Electrotechnical Society, 2022, 37(8): 2018-2029. [28] 涂春鸣, 邹凯星, 高家元, 等. 基于不对称正负反馈效应的PQ功率控制并网逆变器稳定性分析[J]. 电工技术学报, 2023, 38(2): 496-509. Tu Chunming, Zou Kaixing, Gao Jiayuan, et al.Stability analysis of grid-connected inverter under PQ power control based on asymmetric positive-negative- feedback effects[J]. Transactions of China Electro- technical Society, 2023, 38(2): 496-509.