Abstract:The penetration of distributed generation (DG) is increasing on distribution networks due to the “3060 Dual Carbon Goal”. The electricity consumers with DG gradually become the electricity “prosumers”. However, the instability and unpredictability of DG causes the distribution network cost increase. Distribution network tariffs must reflects the supply and demand relationship of the future distribution network. As an objective reflection of distribution network cost, distribution network tariffs show the fairness of users. The objectivity and fairness of tariffs can effectively improve the efficiency of the distribution network and promote the construction and expansion of the distribution network. The cost-sharing of traditional distribution network tariffs is based on voltage level, which can result in a “death spiral” in the utility company. Therefore, the aim of distribution network tariff redesign is high-penetration DG adaption. The aim ensures the fairness of energy sharing for P2P and effectiveness and sustainability of distribution network operation. Firstly, the ideal distribution network tariff composition considering investment recovery is proposed. The distribution network tariff changes of DG integration to the grid with high penetration are obtained. Secondly, the state-of-the-art research in distribution network tariff design is summarized in two aspects: DG-self-use and surplus-grid connection. The distribution tariff design of DG-self-use can be divided into capacity charge, electricity charge, and demand charge. The distribution tariff design of surplus-grid-connection can be divided into feed-in-tariff (TiF), net-metering (NM), and net-purchase-and-sale (NPS). Also, the advantages/disadvantages and applicability of different types of distribution network tariffs are discussed in this paper. Thirdly, a complete tariff design criterion is proposed. Combined with the operation characteristics, the distribution network tariffs in the typical countries are classified into different categories. Based on the design criterion, the emphasis and design concept of distribution network tariffs in the typical countries are comparatively analyzed. Finally, some suggestions for distribution network tariffs design are improved based on the DG distribution and development objectives of China. The following conclusions can be drawn from the analysis: (1) Electricity charge is suitable for complex situations, which require quick adjustment (alleviating transmission congestion). Capacity charge can be applied in the situation of DG prosumers without smart meters or with separate transformers and feeders. Demand charge can motivate controllable DG to adjust peak load or reduce the probability of consistent peak. (2) On the combination of the domestic real needs, CPC/RTP can be widely employed to motivate controllable DG. The electricity charge design of Denmark can be used to regulate uncontrollable DG; SBBM models of Netherlands are suitable for the EV region with high permeability. Design again the capacity charge/ demand charge to be used for peak electricity consumption region. Demand charge of the U.S. and community energy management method in the UK can be used in DPV endorsement region. (3) In addition, the electricity market degree should be considered to promote the development. The charging reform cannot accomplish in one stroke, on the contrary, coordination and development of the course are length main thread. Therefore, it is necessary to set up other market mechanisms to promote the applicability of distribution network tariffs design.
林雪杉, 张汀荟, 王蓓蓓. 高渗透率分布式发电并网下公共配电网市场化收费的思考[J]. 电工技术学报, 2023, 38(19): 5256-5273.
Lin Xueshan, Zhang Tinghui, Wang Beibei. Review of Distribution Network Tariff Design with High-Penetration of Distributed Generation. Transactions of China Electrotechnical Society, 2023, 38(19): 5256-5273.
[1] 中共中央关于制定国民经济和社会发展第十四个五年规划和二〇三五年远景目标的建议[Z]. 中共中央关于制定国民经济和社会发展第十四个五年规划和二〇三五年远景目标的建议[Z]. http://www.xinhuanet.com/politics/2020-11/03/c_1126693341.html. [2] 王莹, 肖峻, 曹严. 柔性配电网对间歇性分布式发电消纳能力分析[J]. 电力系统自动化, 2022, 46(13): 74-83. Wang Ying, Xiao Jun, Cao Yan.Analysis on capability of intermittent distributed generation in flexible distribution network[J]. Automation of Electric Power Systems, 2022, 46(13): 74-83. [3] 彭一海, 刘继春, 刘俊勇. 两级电力市场环境下考虑多类型零售套餐的售电公司购售电策略[J]. 电网技术, 2022, 46(3): 944-957. Peng Yihai, Liu Jichun, Liu Junyong.Electricity purchasing and selling strategies for electricity retailers considering multiple types of retail packages in two level electricity market[J]. Power System Technology, 2022, 46(3): 944-957. [4] 2020年国家电网有限公司:关于进一步严格控制电网投资的通知[Z]. https://guangfu.bjx.com.cn/news/20191202/1025242.shtml. [5] Bonbright J, James C.Principles of public utility rates, New York chichester[M]. West Sussex: Columbia University Press, 1961. https://doi.org/10.7312/bonb92418. [6] Faruqui A, Hledik R. An evaluation of SRP’s electric rate proposal for residential customers with distributed generation[Z]. Salt River Project, 2015, https://legacy-assets.eenews.net/open_files/assets/2015/03/05/document_ew_02.pdf. [7] 李力行, 苗世洪, 余璟, 等. 源荷双侧不确定因素影响下基于Rubinstein博弈的电网双层定价模型[J]. 电工技术学报, 2019, 34(增刊2): 729-741. Li Lixing, Miao Shihong, Yu Jing, et al.Double-layer pricing model of power grid based on Rubinstein game under the influence of source-side and load-side uncertainty[J]. Transactions of China Electrotechnical Society, 2019, 34(S2): 729-741. [8] Borensteins, Bushnell J B. Do two electricity pricing wrongs make a right? Cost recovery, externalities and efficiency[Z]. National Bureau of Economic Research, 2018. https://www.nber.org/papers/w24756. [9] 姚昊天, 向月, 刘俊勇. 基于过网费动态更新的分布式电源多主体协同规划方法[J]. 电力系统自动化, 2021, 45(17): 70-78. Yao Haotian, Xiang Yue, Liu Junyong.Multi-agent collaborative planning method for distributed generators based on dynamic updating of network tariffs[J]. Automation of Electric Power Systems, 2021, 45(17): 70-78. [10] Council of the European Union. Proposal for a directive of the European Parliament and of the council on common rules for the internal market in electricity[R/OL]. Brussels, Belgium, 2017, https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52016PC0864R%2801%29. [11] 易娜. 输配电价成本核算及定价机制研究[J]. 财经界, 2019(11): 56. Yi Na.Research on cost accounting and pricing mechanism of transmission and distribution price[J]. Money China, 2019(11): 56. [12] Brown T, Faruqui A, Grausz L.Efficient tariff structures for distribution network services[J]. Economic Analysis and Policy, 2015, 48: 139-149. [13] 王欣, 谢文华, 张利君. 增量配电网多主体投资收益分配研究: 基于AHP-SPA-Shapley模型的分析[J]. 价格理论与实践, 2021(11): 102-105, 197. Wang Xin, Xie Wenhua, Zhang Lijun.Research on multi-agent investment income distribution in incremental distribution network—analysis based on AHP-SPA-Shapley model[J]. Price: Theory & Practice, 2021(11): 102-105, 197. [14] IEA. Renewables[Z].https://www.iea.org/fuels-and-technologies/renewables. [15] 李振坤, 钱晋, 符杨, 等. 基于负荷聚合商优选分级的配电网多重阻塞管理[J]. 电力系统自动化, 2021, 45(19): 109-116. Li Zhenkun, Qian Jin, Fu Yang, et al.Multiple congestion management for distribution network based on optimization classification of load aggregators[J]. Automation of Electric Power Systems, 2021, 45(19): 109-116. [16] 陈新晨, 潘学萍, 马倩, 等. 基于系统动力学理论的输配电价绩效管制建模与分析[J]. 电力自动化设备, 2022, 42(9): 27-34, 42. Chen Xinchen, Pan Xueping, Ma Qian, et al.Modeling and analysis of transmission and distribution price performance-based regulation based on system dynamics theory[J]. Electric Power Automation Equipment, 2022, 42(9): 27-34, 42. [17] 刘思强, 叶泽, 于从文, 等. 我国分压分类电价交叉补贴程度及处理方式研究: 基于天津市输配电价水平测算的实证分析[J]. 价格理论与实践, 2016(5): 65-68. Liu Siqiang, Ye Ze, Yu Congwen, et al.Study on the cross-subsidy degree and treatment methods of China’s partial pressure classified electricity price—an empirical analysis based on the calculation of Tianjin’s transmission and distribution price level[J]. Price: Theory & Practice, 2016(5): 65-68. [18] 王风云, 苏烨琴, 李啸虎. 电力体制改革下核定输配电价难点与对策研究[J]. 价格理论与实践, 2016(11): 62-65. Wang Fengyun, Su Yeqin, Li Xiaohu.Research on the difficulties and countermeasures of verifying transmission and distribution prices under the reform of power system[J]. Price: Theory & Practice, 2016(11): 62-65. [19] 陈凯, 李效臻, 黄康任. 输配电价改革: 电价、电量与投资关系研究[J]. 价格理论与实践, 2017(4): 52-55. Chen Kai, Li Xiaozhen, Huang Kangren.Reform of transmission-distribution electricity price: study on the relationship between the price, quantity and investment[J]. Price: Theory & Practice, 2017(4): 52-55. [20] Rautiainen A, Lummi K, Supponen A, et al.Reforming distribution tariffs of small customers-targets, challenges and impacts of implementing novel tariff structures[J]. CIRED - Open Access Proceedings Journal, 2017, 2017(1): 2857-2860. [21] Beaufils T, Pineau P O.Assessing the impact of residential load profile changes on electricity distribution utility revenues under alternative rate structures[J]. Utilities Policy, 2019, 61: 100959. [22] 王永利, 王晓海, 王硕, 等. 基于输配电价改革的电网运维成本分摊方法研究[J]. 电网技术, 2020, 44(1): 332-339. Wang Yongli, Wang Xiaohai, Wang Shuo, et al.A method allocating operation and maintenance cost of power grid project based on transmission and distribution price reform[J]. Power System Technology, 2020, 44(1): 332-339. [23] Palacios J P, Samper M E, Vargas A.Dynamic transactive energy scheme for smart distribution networks in a Latin American context[J]. IET Generation, Transmission & Distribution, 2019, 13(9): 1481-1490. [24] 张汀荟, 谢明成, 王蓓蓓, 等. 分布式光伏的共享价值及其对配电网影响的系统动力学仿真[J]. 电力系统自动化, 2021, 45(18): 35-44. Zhang Tinghui, Xie Mingcheng, Wang Beibei, et al.System dynamics simulation of shared value of distributed photovoltaic and its impact on distribution network[J]. Automation of Electric Power Systems, 2021, 45(18): 35-44. [25] 施磊, 喻乐, 谢旭, 等. 输配电价改革的进展与探索[J]. 财经智库, 2020, 5(4): 114-125, 144. Shi Lei, Yu Le, Xie Xu, et al.Progress and exploration of power transmission and distribution price reform[J]. Financial Minds, 2020, 5(4): 114-125, 144. [26] Chakraborty P, Baeyens E, Khargonekar P P, et al.Analysis of solar energy aggregation under various billing mechanisms[J]. IEEE Transactions on Smart Grid, 2019, 10(4): 4175-4187. [27] Schittekatte T, Momber I, Meeus L.Future-proof tariff design: recovering sunk grid costs in a world where consumers are pushing back[J]. Energy Economics, 2018, 70: 484-498. [28] Ma Zheng, Broe M, Fischer A, et al.Ecosystem thinking: creating microgrid solutions for reliable power supply in India’s power system[C]//2019 1st Global Power, Energy and Communication Conference (GPECOM), Nevsehir, Turkey, 2019: 392-397. [29] Borquez J, Chavez H, Barbosa K A, et al.A simple distribution energy tariff under the penetration of DG[J]. Energies, 2020, 13(8): 1910. [30] 丛野. 与电力现货市场协同的输电定价理论与方法研究[D]. 北京: 华北电力大学, 2021. [31] Christensen K, Ma Zheng, Jørgensen B N.Technical, economic, social and regulatory feasibility evaluation of dynamic distribution tariff designs[J]. Energies, 2021, 14(10): 2860. [32] Lutz O, Olavarria V, Hollinger R, et al.Dynamic tariff design for a robust smart grid concept: an analysis of global vs. local incentives[C]//2017 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe), Turin, Italy, 2018: 1-6. [33] 谭忠富, 蒲雷, 吴静, 等. 基于负荷率差别定价的分时输配电价优化模型[J]. 系统工程理论与实践, 2019, 39(11): 2945-2952. Tan Zhongfu, Pu Lei, Wu Jing, et al.Time-of-use transmission and distribution price optimization model based on differential loading rate[J]. Systems Engineering-Theory & Practice, 2019, 39(11): 2945-2952. [34] Fischer D, Stephen B, Flunk A, et al.Modeling the effects of variable tariffs on domestic electric load profiles by use of occupant behavior submodels[J]. IEEE Transactions on Smart Grid, 2017, 8(6): 2685-2693. [35] Lutz O, Hollinger R, Olavarria V, et al.Time-optimized dynamic two-step tariffs for CHP operation[C]//International ETG Congress, Bonn, Germany, 2018: 1-6. [36] Malatji E M.The use of dynamic tariff by the utilities to counter act the influence of renewable energy sources[C]//2019 7th International Conference on Smart Grid, Newcastle, NSW, Australia, 2020: 103-107. [37] Ofgem consideration[Z]. https://www.ofgem.gov.uk/electricity/retail-market/market-review-and-reform/smarter-markets-programme/electricity-settlement. [38] Pereyra-Zamora F H, Vieira Tahan C M, Kagan N, et al. An infrastructure of dynamic tariff management and demand response applied to smart grids using renewable energy resources and energy storage systems[C]//2019 IEEE PES Innovative Smart Grid Technologies Conference - Latin America, Gramado, Brazil, 2019: 1-6. [39] Koskela J, Lummi K, Mutanen A, et al.Utilization of electrical energy storage with power-based distribution tariffs in households[J]. IEEE Transactions on Power Systems, 2019, 34(3): 1693-1702. [40] Le Xinyi, Chen Sijie, Yan Zheng, et al.Enabling a transactive distribution system via real-time distributed optimization[J]. IEEE Transactions on Smart Grid, 2019, 10(5): 4907-4917. [41] Haendel M, Stute J.Grid expansion costs considering different price control strategies of power-to-X options based on dynamic tariffs at the low-voltage level[C]//2019 16th International Conference on the European Energy Market, Ljubljana, Slovenia, 2019. [42] 杨镜司, 秦文萍, 史文龙, 等. 基于电动汽车参与调峰定价策略的区域电网两阶段优化调度[J]. 电工技术学报, 2022, 37(1): 58-71. Yang Jingsi, Qin Wenping, Shi Wenlong, et al.Two-stage optimal dispatching of regional power grid based on electric vehicles’ participation in peak-shaving pricing strategy[J]. Transactions of China Electro-technical Society, 2022, 37(1): 58-71. [43] 李泽宏, 曾杨超, 周畅游, 等. 基于电力现货市场出清模拟的节点电价影响因素分析[J]. 电气技术, 2020, 21(5): 41-47. Li Zehong, Zeng Yangchao, Zhou Changyou, et al.Analysis of effect factors of nodal price based on electric spot market clearing simulation[J]. Electrical Engineering, 2020, 21(5): 41-47. [44] Huang Shaojun, Wu Qiuwei, Shahidehpour M, et al.Dynamic power tariff for congestion management in distribution networks[J]. IEEE Transactions on Smart Grid, 2019, 10(2): 2148-2157. [45] Huang Shaojun, Wu Qiuwei.Dynamic tariff-subsidy method for PV and V2G congestion management in distribution networks[J]. IEEE Transactions on Smart Grid, 2019, 10(5): 5851-5860. [46] Lewis W A.The two-part tariff[J]. Economica, 1941, 8(31): 249. [47] Helen Electricity Network Ltd., Helsinki, Finland.Electricity distribution prices[Z/OL]. https://www.helen.fi/en/electricity/electricity-products-and-prices/mark-etpriceelectricity. [48] Elkasrawy A, Venkatesh B.Demand response cooperative and demand charge[J]. IEEE Transactions on Smart Grid, 2020, 11(5): 4167-4175. [49] Schittekatte T, Meeus L. Introduction to network tariffs and network codes for consumers, prosumers,energy communities[Z/OL]. Florence School of Regulation, 2018, https://cadmus.eui.eu/handle/1814/57164. [50] 张粒子, 叶红豆, 陈逍潇. 基于峰荷责任的输配电价定价方法[J]. 电力系统自动化, 2017, 41(14): 92-98. Zhang Lizi, Ye Hongdou, Chen Xiaoxiao.Transmission and distribution pricing method based on peak-load pricing[J]. Automation of Electric Power Systems, 2017, 41(14): 92-98. [51] Jin Jiangliang, Xu Yunjian.Optimal storage operation under demand charge[J]. IEEE Transactions on Power Systems, 2017, 32(1): 795-808. [52] Tuunanen J, Honkapuro S, Partanen J.Power-based distribution tariff structure: DSO’s perspective[C]//2016 13th International Conference on the European Energy Market (EEM), Porto, Portugal, 2016: 1-5. [53] Passey R, Haghdadi N, Bruce A, et al.Designing more cost reflective electricity network tariffs with demand charges[J]. Energy Policy, 2017, 109: 642-649. [54] Darghouth N R, Barbose G, Zuboy J, et al.Demand charge savings from solar PV and energy storage[J]. Energy Policy, 2020, 146: 111766. [55] 钱俊杰. 新电改背景下电价形成机制研究[D]. 武汉: 华中科技大学, 2019. [56] Hu Zheng, Kim J H, Wang Jianhui, et al.Review of dynamic pricing programs in the U.S. and Europe: status quo and policy recommendations[J]. Renewable and Sustainable Energy Reviews, 2015, 42: 743-751. [57] 乐健, 柳永妍, 叶曦, 等. 含高渗透率分布式电能资源的区域电网市场化运营模式[J]. 中国电机工程学报, 2016, 36(12): 3343-3354. Le Jian, Liu Yongyan, Ye Xi, et al.Market-oriented operation pattern of regional power network integration with high penetration level of distributed energy resources[J]. Proceedings of the CSEE, 2016, 36(12): 3343-3354. [58] LeBel M, Weston F, Sandoval R. Demand charges: what are they good for?[Z].2020. https://www.raponline.org/knowledge-center/demand-charges-what-are-they-good-for/. [59] Partanen J, Tuunanen J, Honkapuro S, et al.Tariff scheme options for distribution system operators[R]. Lappeenranta, Finland: LUT Energy Report, 2012: 67-134. [60] Koskela J, Lummi K, Mutanen A, et al.Utilization of electrical energy storage with power-based distribution tariffs in households[J]. IEEE Transactions on Power Systems, 2019, 34(3): 1693-1702. [61] Johnston L, Takahashi K, Weston F.Rate structures for customers with onsite generation: Practice and innovation. National Renewable Energy Laboratory[D]. Golden: National Renewable Energy Lab., 2005. [62] Lazar J, Gonzalez W. Smart rate design for a smart future[Z/OL]. The Regulatory Assistance Project, 2015, https://www.raponline.org/wp-content/uploads/2016/12/rap_lazar_smartrates_tx_2016_09_22.pdf. [63] Bibra E M, Connelly E, M Gorner. Global EV outlook2021: accelerating ambitions despite the pandemic[Z/OL]. International Energy Agency, 2021, https://trid.trb.org/view/1925380. [64] Yamamoto Y.Pricing electricity from residential photovoltaic systems: a comparison of feed-in tariffs, net metering, and net purchase and sale[J]. Solar Energy, 2012, 86(9): 2678-2685. [65] Wan Can, Lin Jin, Song Yonghua, et al.Probabilistic forecasting of photovoltaic generation: an efficient statistical approach[J]. IEEE Transactions on Power Systems, 2017, 32(3): 2471-2472. [66] 苏剑, 周莉梅, 李蕊. 分布式光伏发电并网的成本/效益分析[J]. 中国电机工程学报, 2013, 33(34): 50-56, 11. Su Jian, Zhou Limei, Li Rui.Cost-benefit analysis of distributed grid-connected photovoltaic power generation[J]. Proceedings of the CSEE, 2013, 33(34): 50-56, 11. [67] Palensky P, Dietrich D.Demand side management: demand response, intelligent energy systems, and smart loads[J]. IEEE Transactions on Industrial Informatics, 2011, 7(3): 381-388. [68] Hill C A, Such M C, Chen Dongmei, et al.Battery energy storage for enabling integration of distributed solar power generation[J]. IEEE Transactions on Smart Grid, 2012, 3(2): 850-857. [69] 张迪, 苗世洪, 周宁, 等. 分布式发电市场化环境下各交易主体响应行为模型[J]. 电工技术学报, 2020, 35(15): 3327-3340. Zhang Di, Miao Shihong, Zhou Ning, et al.Research on response behavior model of trading entities considering the marketization environment of distributed generation[J]. Transactions of China Electrotechnical Society, 2020, 35(15): 3327-3340. [70] Paudel A, Sampath L P M I, Yang Jiawei, et al. Peer-to-peer energy trading in smart grid considering power losses and network fees[J]. IEEE Transactions on Smart Grid, 2020, 11(6): 4727-4737. [71] Baroche T, Pinson P, Le Goff Latimier R, et al. Exogenous cost allocation in peer-to-peer electricity markets[J]. IEEE Transactions on Power Systems, 2019, 34(4): 2553-2564. [72] Guerrero J, Chapman A C, Verbič G.Decentralized P2P energy trading under network constraints in a low-voltage network[J]. IEEE Transactions on Smart Grid, 2019, 10(5): 5163-5173. [73] Chen Y C, Domínguez-García A D, Sauer P W. Measurement-based estimation of linear sensitivity distribution factors and applications[J]. IEEE Transactions on Power Systems, 2014, 29(3): 1372-1382. [74] Nood A, Ollenberg B, ShebléG. Power generation, operation, and control[M]. New Jersey: Wiley, 2013. [75] 许伦, 王蓓蓓, 李雅超, 等. 配电网安全导向的分布式资源P2P区块链交易机制研究[J]. 电力自动化设备, 2021, 41(9): 215-223. Xu Lun, Wang Beibei, Li Yachao, et al.Reaearch on P2P blockchain transaction mechanism of distributed resources oriented by distribution network security[J]. Electric Power Automation Equipment, 2021, 41(9): 215-223. [76] 吴治国, 刘继春, 张帅, 等. 多售电主体点对点交易模式及其动态过网费机制[J]. 电力系统自动化, 2021, 45(19): 100-108. Wu Zhiguo, Liu Jichun, Zhang Shuai, et al.Peer-to-peer transaction model of multiple power sellers and its dynamic network fee mechanism[J]. Automation of Electric Power Systems, 2021, 45(19): 100-108. [77] Partanen J, Honkapuro S, Tuunanen J.Tariff scheme options for distribution system operators[R]. Lappeenranta University of Technology, 2012. [78] Einarsen A.National regulators within EU policy networks: a case study of the Norwegian Energy Regulatory Authority (RME)[D]. Norway: University of Agder, 2020. [79] Martinopoulos G.Are rooftop photovoltaic systems a sustainable solution for Europe? a life cycle impact assessment and cost analysis[J]. Applied Energy, 2020, 257: 114035. [80] NordREG. Tariffs in Nordic countries - survey of load tariffs in DSO grids[R/OL]. 2015. http://www.nordicenergyregulators.org. [81] Pyrgou A, Kylili A, Fokaides P A.The future of the Feed-in Tariff (FiT) scheme in Europe: the case of photovoltaics[J]. Energy Policy, 2016, 95: 94-102. [82] Moncada J A, Tao Z, Valkering P, et al.Influence of distribution tariff structures and peer effects on the adoption of distributed energy resources[J]. Applied Energy, 2021, 298: 117086. [83] Sahu B K.A study on global solar PV energy developments and policies with special focus on the top ten solar PV power producing countries[J]. Renewable and Sustainable Energy Reviews, 2015, 43: 621-634. [84] Grover D, Daniels B.Social equity issues in the distribution of feed-in tariff policy benefits: a cross sectional analysis from England and Wales using spatial census and policy data[J]. Energy Policy, 2017, 106: 255-265. [85] Pyper J. Nevada-puc-approves-net-metering-rules-expected-to-reboot-the-rooftop-solar?[R].2007, Boston, MA,USA. [86] DNV. Effective and cost-reflective distribution tariff (2019 White paper)[R]. 2020. https://www.dnv.com/publications/effective-and-cost-reflective-distribution-tariffs-162913. [87] Sun Qie, Li Hailong, Ma Zhanyu, et al.A comprehensive review of smart energy meters in intelligent energy networks[J]. IEEE Internet of Things Journal, 2016, 3(4): 464-479. [88] 高红均, 张凡, 刘俊勇, 等. 考虑多产消者差异化特征的社区微网系统P2P交易机制设计[J]. 中国电机工程学报, 2022, 42(4): 1455-1470. Gao Hongjun, Zhang Fan, Liu Junyong, et al.Design of P2P transaction mechanism considering differentiation characteristics of multiple prosumers in community microgrid system[J]. Proceedings of the CSEE, 2022, 42(4): 1455-1470. [89] 徐辉, 骆子雅, 谢文锦, 等. 英国配电价格机制对我国增量配电网建设的启示[J]. 广东电力, 2019, 32(10): 119-126. Xu Hui, Luo Ziya, Xie Wenjin, et al.Enlightenment of UK power distribution pricing mechanism to construction of incremental distribution network in China[J]. Guangdong Electric Power, 2019, 32(10): 119-126. [90] OFGEM. Targeted charging review: decision and impact assessment.2019[Z]. https://www.ofgem.gov.uk/system/files/docs/2019/12/full_decision_doc_updated.pdf. [91] Acharya A, Cave L A.Feed-in-tariff removal in UK’s community energy: analysis and recommendations for business practices[J]. Journal of Sustainable Development, 2020, 13(4): 1. [92] 国际能源署. 中国分布式能源前景展望[M]. 北京: 石油工业出版社, 2017. [93] IEA. Prospects for distributed energy systems in China[R].2017. https://www.iea.org/reports/prospects-for-distributed-energy-systems-in-china. [94] 江苏省发展改革委.关于明确分布式发电市场化交易和增量配电网试点项目有关电价问题的通知[Z].2020. https://news.bjx.com.cn/html/20201228/1125618.shtml. [95] 边晓燕, 张璐瑶, 周波, 等. 基于知识图谱的国内外电力市场研究综述[J]. 电工技术学报, 2022, 37(11): 2777-2788. Bian Xiaoyan, Zhang Luyao, Zhou Bo, et al.Review on domestic and international electricity market research based on knowledge graph[J]. Transactions of China Electrotechnical Society, 2022, 37(11): 2777-2788. [96] 罗桓桓, 王昊, 葛维春, 等. 考虑报价监管的动态调峰辅助服务市场竞价机制设计[J]. 电工技术学报, 2021, 36(9): 1935-1947, 1955. Luo Huanhuan, Wang Hao, Ge Weichun, et al.Design of dynamic peak regulation ancillary service market bidding mechanism considering quotation super-vision[J]. Transactions of China Electrotechnical Society, 2021, 36(9): 1935-1947, 1955. [97] 陈大宇. 电力现货市场配套容量机制的国际实践比较分析[J]. 中国电力企业管理, 2020(1): 30-35. Chen Dayu.Comparative analysis of international practice of supporting capacity mechanism in power spot market[J]. China Power Enterprise Management, 2020(1): 30-35. [98] 冯昌森, 谢方锐, 文福拴, 等. 基于智能合约的绿证和碳联合交易市场的设计与实现[J]. 电力系统自动化, 2021, 45(23): 1-11. Feng Changsen, Xie Fangrui, Wen Fushuan, et al.Design and implementation of joint trading market for green power certificate and carbon based on smart contract[J]. Automation of Electric Power Systems, 2021, 45(23): 1-11.