The servo system is also called a follow-up system, which is a feedback control system used to accurately follow or reproduce a process. So that the position, orientation, state, and other controlled output variables of the object can follow the arbitrary changes of the input target (or given value). Because the servo system can achieve precise speed and position control in a wide range, it is generally used in occasions that require high system performance, such as industrial production, military defense security, and many other fields. With the improvement of manufacturing technology of permanent magnet materials, the permanent magnet servo system has also been developed rapidly, and the control performance has also been improved. However, the traditional speed control strategy in the servo system still has the problem of amplitude and phase deviation in the low-frequency band, which reduces the precision of speed tracking control.
In order to improve the speed tracking accuracy of the servo system in the full speed range, a high-precision speed tracking control strategy and a data-driven parameter design method are proposed. Firstly, a lag-lead compensator is connected in series in the speed control link to correct the amplitude and phase of the low-frequency band. This is expected to make the corrected amplitude and phase shift tend to zero, to improve the speed tracking accuracy. Secondly, considering that it is still difficult to avoid performance degradation when the system parameters are not matched, it is necessary to optimize the parameters of the compensator. Based on this, a data-driven parameter optimization design method was designed to minimize the amplitude and phase errors after low-frequency compensation and constrain the maximum value gain and phase shift of the compensator in the full-frequency band. Thirdly, to further improve the adaptability of parameters, according to the simulation or experimental data, the actual amplitude gain and phase shift of the system in the low-frequency band is obtained. And then the parameters of the lag-lead compensator are continuously optimized based on the feedback junction so that the compensated amplitude gain and phase shift have the minimum mean square error. Compared with the traditional methods, the designed lag-lead compensator and parameter optimization method can be more matched with the actual system, so that it can better cope with the negative effects caused by uncertain factors such as the mismatch of the moment of inertia in the actual system.
The experimental results show that the compensator designed based on experimental data has a speed tracking error of less than 2 r/min in the low-frequency range where the speed instruction frequency is less than 1 rad/s, which significantly improves the speed control accuracy compared with the traditional method. And the control effect of this method is equivalent to that of the traditional method when tracking the speed step command, which shows that the proposed method does not affect the dynamic characteristics of the servo system.
The analysis conclusion indicates that the proposed method can improve the tracking performance in the low-frequency band while maintaining the original amplitude-frequency and phase-frequency characteristics of the control system in the middle and high-frequency bands. This is conducive to improving the speed tracking accuracy of the servo system in the full speed range and promoting the engineering application of the permanent magnet servo system.
[1] 高宇. 航天用永磁同步电机直驱伺服系统低速运行控制技术研究[D]. 南京:南京航空航天大学, 2019.
[2] 韩镇锚. 永磁同步电机直驱式位置伺服系统控制成策略研究[D]. 南京航空航天大学, 2017.
[3] Li G, Ren B, Zhu Z, et al.Cogging Torque Mitigation of Modular Permanent Magnet Machines[J]. IEEE Trans. Magn., 2015, 52(1):1-10.
[4] 耿强, 王亮, 周湛清, 等.五桥臂逆变器双永磁电机三矢量预测控制[J]. 电工技术学报, 2021, 36(1):87-95.
Geng Qiang, Wang Liang, Zhou Zhanqing, et al.Three-Vector-Based Predictive Control for Dual Permanent Magnet Synchronous Motors Fed by the Five-Leg Inverter[J]. Transactions of China Electrotechnical Society, 2021, 36(1): 87-95.
[5] 贾成禹, 王旭东, 周凯. 基于线性变参数模型预测控制的内置式永磁同步电机转速控制器设计[J]. 电工技术学报, 2020, 35(22):4666-4677.
Jia Chengyu, Wang Xudong, Zhou Kai.Design of Interior Permanent Magnet Synchronous Motor Speed Controller Based on Linear Parameter Varying Model Predictive Control[J]. Transactions of China Electrotechnical Society, 2020, 35(22): 4666-4677.
[6] 张康, 王丽梅. 基于反馈线性化的永磁直线同步电机自适应动态滑模控制[J]. 电工技术学报, 2021, 36(19): 4016-4024.
Zhang Kang, Wang Limei.Adaptive Dynamic Sliding Mode Control of Permanent Magnet Linear Synchronous Motor Based on Feedback Linearization[J]. Transactions of China Electrotechnical Society, 2021, 36(19): 4016-4024.
[7] Yan Y, Yang J, Sun Z, et al.Robust Speed Regulation for PMSM Servo System With Multiple Sources of Disturbances via an Augmented Disturbance Observer[J]. IEEE/ASME Transactions on Mechatronics, 2018, 23(2): 769-780.
[8] 王莉娜, 朱鸿悦, 杨宗军. 永磁同步电动机调速系统PI控制器参数整定方法[J]. 电工技术学报, 2014, 29(5): 104-117.
Wang Lina, Zhu Hongyue, Yang Zongjun.Tuning Method for PI Controllers of PMSM Driving System[J]. Transactions of China Electrotechnical Society, 2014, 29(5): 104-117.
[9] 李文善. 基于PI型迭代学习控制的永磁同步电机转矩脉动抑制策略[D]. 天津: 天津大学, 2011.
[10] 闫宏亮, 李家鹏, 李雷明. 永磁同步电机伺服系统自抗扰控制器设计[J]. 太赫兹科学与电子信息学报, 2021, 19(1): 138-144.
Yan Hongliang, Li Jiapeng, Li Leiming.Active Disturbance Rejection Controller Design for PMSM Servo System[J]. Journal of terahertz science and electronic information technology, 2021, 19(1): 138-144.
[11] 王永, 窦晓华, 方浩, 等. 永磁同步电机非线性黄金分割自适应转速控制[J]. 电机与控制学报, 2017, 21(10):23-29.
Wang Yong, Dou Xiaohua, Fang Hao, et al.Nonlinear Golden Section Adaptive Speed Control of Permanent Magnet Synchronous Motor[J]. Transactions of China Electrotechnical Society, 2017, 21(10): 23-29.
[12] 王旻. 引入负载扰动补偿的永磁同步电机新型非奇异终端滑模转速控制研究[D]. 西安: 西安理工大学, 2021.
[13] 武志涛, 李帅, 程万胜. 基于扩展滑模扰动观测器的永磁直线同步电机定结构滑模位置跟踪控制[J]. 电工技术学报, 2022, 37(10): 2503-2512.
Wu Zhitao, Li Shuai, Cheng Wansheng.Fixed Structure Sliding Mode Position Tracking Control for Permanent Magnet Liner Synchronous Motor Based on Extended Sliding Mode Disturbance Observer[J]. Transactions of China Electrotechnical Society, 2022, 37(10): 2503-2512.
[14] 黄宣睿, 宋宇洋, 李秋生, 等.一种基于内模控制的工业机器人关节伺服系统振动抑制算法[J]. 电工技术学报, 2019, 34(3):497-505.
Huang Xuanrui, Song Yuyang, Li Qiusheng, et al.A Vibration Suppression Algorithm for Industrial Robot Joint Servo System Based on Internal Model Control[J]. Transactions of China Electrotechnical Society, 2019, 34(3):497-505.
[15] Chang Y, Chen C, Zhu Z, et al.Speed Control of the Surface-Mounted Permanent-Magnet Synchronous Motor Based on Takagi-Sugeno Fuzzy Models[J]. IEEE Transactions on Power Electronics, 2016, 31(9):6504-6510.
[16] 张康, 王丽梅. 基于反馈线性化的永磁直线同步电机自适应动态滑模控制[J]. 电工技术学报, 2021, 36(19): 4016-4024.
Zhang Kang, Wang Limei.Adaptive Dynamic Sliding Mode Control of Permanent Magnet Linear Synchronous Motor Based on Feedback Linearization[J]. Transactions of China Electrotechnical Society, 2021, 36(19): 4016-4024.
[17] 卜飞飞, 郭子韬, 顾毅君, 等. 基于改进型降阶观测器的永磁直驱伺服电动机转矩扰动抑制策略[J]. 电工技术学报, 2022, 37(16): 4104-4115.
Pu Feifei, Guo Zitao, Gu Yijun, et al.torque disturbance suppression strategy of permanent magnet direct drive servo motor based on improved reduced order observer[J]. Transactions of China Electrotechnical Society, 2022, 37(16): 4104-4115.
[18] 左月飞. 永磁同步电机伺服系统的转速控制策略研究[D]. 南京: 南京航空航天大学, 2016.
[19] 朱笋, 洪荣晶, 李盛寅. 基于新型滑模算法的永磁同步电机转速控制研究[J]. 电机与控制应用, 2019, 46(5):58-63.
Zhu Sun, Hong Rongjing, Li Shengyin.Research on Speed Control of Permanent Magnet Synchronous Motor Based on New Sliding Mode Algorithm[J]. Electric Machines & Control Application, 2019, 46(5): 58-63.
[20] Bu F, Yang Z, Gao Y, et al.Speed Ripple Reduction of Direct-Drive PMSM Servo System at Low-Speed Operation Using Virtual Cogging Torque Control Method[J]. IEEE Transactions on Industrial Electronics, 2020, 68(1):160-174.
[21] 张政. 基于超前滞后补偿算法的光电雷达伺服控制系统设计[D]. 沈阳:沈阳理工大学, 2018.
[22] 李军, 刘哲, 周永言. 一种新型高性能控制器的研究与应用[J]. 自动化学报, 2020, 46(12): 2558-2571.
Li Jun, Liu Zhe, Zhou Yongyan.Research and Application of a New Higher Performance Controller[J]. ACTA AUTOMATICA SINICA, 2020, 46(12): 2558-2571.
[23] 王美健. 几种新型滞后-超前补偿器的设计与应用[D]. 青岛:中国海洋大学, 2010.
[24] 黄依婷. 基于模糊逻辑控制和滑模控制算法的永磁同步电机伺服控制系统研究[D]. 杭州:浙江大学, 2022.
[25] 刘宁, 夏长亮, 周湛清, 等. 基于比例增益补偿的永磁同步电机转速平滑控制[J]. 电工技术学报, 2018, 33(17):4007-4015.
Liu Ning, Xia Changliang, Zhou Zhanqing, et al.Smooth Speed Control for Permanent Magnet Synchronous Motor Using Proportional Gain Compensation[J]. Transactions of China Electrotechnical Society, 2018, 33(17): 4007-4015.
[26] Yuan L, Jiang Y, Xiong L, et al.Sliding Mode Control Approach with Integrated Disturbance Observer for PMSM Speed System[J]. CES Transactions on Electrical Machines and Systems, 2023, 7(1): 118-127.
[27] 李耀华, 赵承辉, 周逸凡, 等. 基于数据驱动的永磁同步电机深度神经网络控制[J]. 电机与控制学报, 2022, 26(1): 115-125.
Li Yaohua, Zhao Chenghui, Zhou Yifan, et al.Deep Neural Network Control for PMSM Based on Data Drive[J]. Electric Machines and Control, 2022, 26(1): 115-125.
[28] 赵希梅, 陈广国, 金鸿雁. 基于改进灰狼优化算法的PMSM滑模自抗扰控制[J].电机与控制学报, 2022, 26(11): 132-140.
Zhao Ximei, Chen Guangguo, Jin Hongyan.Sliding Mode Active Disturbance Rejection Control for PMSM Based on Improved Grey Wolf Optimization Algorithm[J]. Electric Machines and Control, 2022, 26(11): 132-140.