Measurement Optimization and Analysis of Influencing Factors of IGBT's Turn-off Stress Wave
Geng Xuefeng1, He Yunze1, Wang Guangxin1, Liu Songyuan1, Li Yunjia2
1. College of Electrical and Information Engineering Hunan University Changsha 410082 China; 2. State Key Laboratory of Electrical Insulation for Power Equipment Xi'an Jiaotong University Xi'an 710049 China;
Abstract:Insulated gate bipolar transistor (IGBT) is the key component of power conversion, and its health state is directly related to the safe operation of the system. Acoustic emission (AE) is a fast, non-destructive and on-line detection method, which is widely used in power industry, and has potential application value in the condition evaluation of IGBT. It is reported that IGBT can generate the stress wave (SW) at the moment of turn-off, while AE sensors can measure SW signals. However, AE sensors are susceptible to interference from surrounding electric fields when measuring SW signals. In this paper, the causes of interference signals in AE sensors were analyzed, a method for measuring SW based on differential AE sensor was presented, and the anti-interference mechanism of differential AE sensor was demonstrated theoretically. The experimental results show that the differential AE sensor has good resistance to electrical interference and can extract the turn-off stress wave of IGBT effectively. Further, stress waves of IGBT under the condition of different turn-off current were extracted. It can be concluded that the turn-off current is strongly related to the strength of the SW, which can provide a reference for the exploration of the generation mechanism of stress waves and the realization of online monitoring of IGBT in the future.
耿学锋, 何赟泽, 王广鑫, 刘松源, 李运甲. IGBT关断时刻的应力波测量优化及影响因素分析[J]. 电工技术学报, 2022, 37(21): 5503-5512.
Geng Xuefeng, He Yunze, Wang Guangxin, Liu Songyuan, Li Yunjia. Measurement Optimization and Analysis of Influencing Factors of IGBT's Turn-off Stress Wave. Transactions of China Electrotechnical Society, 2022, 37(21): 5503-5512.
[1] 李辉, 刘人宽, 王晓, 等. 压接型IGBT器件封装退化监测方法综述[J]. 电工技术学报, 2021, 36(12): 2505-2521. Li Hui, Liu Renkuan, Wang Xiao, et al.Review on package degradation monitoring methods of press-pack IGBT modules[J]. Transactions of China Electrotechnical Society, 2021, 36(12): 2505-2521. [2] Liu Jianqiang, Zhong Shigeng, Zhang Jiepin, et al.Auxiliary power supply for medium-/high-voltage and high-power solid-state transformers[J]. IEEE Transactions on Power Electronics, 2020, 35(5): 4791-4803. [3] 张国政, 陈炜, 谷鑫, 等. 三电平牵引变流器改进同步空间矢量调制策略[J]. 电工技术学报, 2020, 35(18): 3908-3916. Zhang Guozheng, Chen Wei, Gu Xin, et al.An improve synchronized space vector modulation strategy for three-level inverter[J]. Transactions of China Electrotechnical Society, 2020, 35(18): 3908-3916. [4] 涂春鸣, 李庆, 郭祺, 等. 具备电压质量调节能力的串并联一体化多功能变流器[J]. 电工技术学报, 2020, 35(23): 4852-4863. Tu Chunming, Li Qing, Guo Qi, et al.Research on series-parallel integrated multifunctional converter with voltage quality adjustment[J]. Transactions of China Electrotechnical Society, 2020, 35(23): 4852-4863. [5] 杨龙月, 郭锐, 张乐, 等. 非理想电网下逆变器并网电流质量改善策略[J]. 电力系统保护与控制, 2020, 48(15): 10-18. Yang Longyue, Guo Rui, Zhang Le, et al.Improvement strategy for grid-connected current quality of an inverter under non-ideal grid conditions[J]. Power System Protection and Control, 2020, 48(15): 10-18. [6] 张峰, 谢运祥, 胡炎申, 等. 临界模式混合光伏微型逆变器的特性分析[J]. 电工技术学报, 2020, 35(6): 1290-1302. Zhang Feng, Xie Yunxiang, Hu Yanshen, et al.Characteristics analysis for a boundary conduction mode hybrid-type photovoltaic micro-inverter[J]. Transactions of China Electrotechnical Society, 2020, 35(6): 1290-1302. [7] 罗旭, 王学梅, 吴海平. 基于多目标优化的电动汽车变流器IGBT及开关频率的选择[J]. 电工技术学报, 2020, 35(10): 2181-2193. Luo Xu, Wang Xuemei, Wu Haiping.Selections of IGBTs and switching frequency of the electric vehicle converter based on multi-objective optimization[J]. Transactions of China Electrotechnical Society, 2020, 35(10): 2181-2193. [8] 刘爽, 牟龙华, 许旭锋, 等. 电力电子器件故障对微电网运行可靠性的影响[J]. 电力系统保护与控制, 2017, 45(24): 63-70. Liu Shuang, Mu Longhua, Xu Xufeng, et al.Research on power electronic devices failures'effect on microgrid operational reliability[J]. Power System Protection and Control, 2017, 45(24): 63-70. [9] 赵子轩, 陈杰, 邓二平, 等. 负载电流对IGBT器件中键合线的寿命影响和机理分析[J]. 电工技术学报, 2022, 37(1): 244-253. Zhao Zixuan, Chen Jie, Deng Erping, et al.The influence and failure mechanism analysis of the load current on the IGBT lifetime with bond wire failure[J]. Transactions of China Electrotechnical Society, 2022, 37(1): 244-253. [10] 姚陈果, 李孟杰, 余亮, 等. 基于脉冲耦合响应的IGBT故障检测方法[J]. 电工技术学报, 2020, 35(15): 3235-3244. Yao Chenguo, Li Mengjie, Yu Liang, et al.A condition detecting method for the IGBT module based on pulse coupling response[J]. Transactions of China Electrotechnical Society, 2020, 35(15): 3235-3244. [11] 黄先进, 李鑫, 刘宜鑫, 等. 基于量化电压并行比较的IGBT状态监测保护电路[J]. 电工技术学报, 2021, 36(12): 2535-2547. Huang Xianjin, Li Xin, Liu Yixin, et al.Condition monitoring and protection circuit for IGBTs based on parallel comparison methods of quantized voltages[J]. Transactions of China Electrotechnical Society, 2021, 36(12): 2535-2547. [12] Brauhn T J, Sheng Minhao, Dow B A, et al.Module-integrated GMR-based current sensing for closed loop control of a motor drive[C]//2015 IEEE Energy Conversion Congress and Exposition (ECCE), Montreal, Canada, 2015: 342-349. [13] 姚芳, 胡洋, 李铮, 等. 基于结温监测的风电IGBT热安全性和寿命耗损研究[J]. 电工技术学报, 2018, 33(9): 2024-2033. Yao Fang, Hu Yang, Li Zheng, et al.Study on thermal safety and lifetime consumption of IGBT in wind power converters based on junction temperature monitoring[J]. Transactions of China Electrotechnical Society, 2018, 33(9): 2024-2033. [14] 余瑶怡, 杜雄, 张军. 基于热时间常数的IGBT模块热疲劳老化监测方法[J]. 电源学报, 2020, 18(1): 18-27. Yu Yaoyi, Du Xiong, Zhang Jun.Thermal fatigue monitoring method for IGBT module based on thermal time constants[J]. Journal of Power Supply, 2020, 18(1): 18-27. [15] He Yunze, Li Mengchuan, Meng Zhiqiang, et al. An overview of acoustic emission inspection and monitoring technology in the key components of renewable energy systems[J]. Mechanical Systems and Signal Processing, 2021, 148: 107146(1-41). [16] Kärkkäinen T J, Talvitie J P, Kuisma M, et al.Acoustic emission in power semiconductor modules—first observations[J]. IEEE Transactions on Power Electronics, 2014, 29(11): 6081-6086. [17] Kärkkäinen T J, Talvitie J P, Kuisma M, et al.Acoustic emission caused by the failure of a power transistor[C]//2015 IEEE Applied Power Electronics Conference and Exposition (APEC), Charlotte, NC, USA, 2015: 2481-2484. [18] Müller S, Drechsler C, Heinkel U, et al.Acoustic emission for state-of-health determination in power modules[C]//2016 13th International Multi-Conference on Systems, Signals & Devices (SSD), Leipzig, Germany, 2016: 468-471. [19] Davari P, Kristensen O, Iannuzzo F. Investigation of acoustic emission as a non-invasive method for detection of power semiconductor aging[J]. Microelectronics Reliability, 2018, 88-90: 545-549. [20] Li Mengchuan, He Yunze, Meng Zhiqiang, et al.Acoustic emission-based experimental analysis of mechanical stress wave in IGBT device[J]. IEEE Sensors Journal, 2020, 20(11): 6064-6074. [21] 何赟泽, 邹翔, 李孟川, 等. 30V条件下功率MOSFET器件应力波理论与试验研究[J]. 中国电机工程学报, 2021, 41(16): 5683-5693. He Yunze, Zou Xiang, Li Mengchuan, et al.Theoretical and experimental study on stress wave of power MOSFET under 30 volts[J]. Proceedings of the CSEE, 2021, 41(16): 5683-5693. [22] 王庆锋, 吴斌, 焦敬品, 等. 一种声发射传感器的研制[J]. 压电与声光, 2007, 29(2): 179-181. Wang Qingfeng, Wu Bin, Jiao Jingpin, et al.Design of a kind of acoustic emission sensor[J]. Piezoelectrics & Acoustooptics, 2007, 29(2): 179-181. [23] 王德石, 张恺. 压电换能器设计原理[M]. 武汉: 武汉理工大学出版社, 2016.