Abstract:Due to the limitation of the operating frequency of switching devices, the output frequency converted by conventional high-frequency inverters is difficult to increase.In order to meet the requirements of high-frequency operation of wireless power transfer (WPT) systems, an inverter and its driving strategy, whose output square wave frequency is three times the operating frequency of the switching device, are proposed based on conventional phase-shifting full-bridge inverters in this paper.The operating modes of the proposed inverter withan equivalent WPT model are also analyzed. Compared with other high-frequency inverters, the output frequency of the inverter is increased by three times, the current stress of the switches is reduced to one third of the original, and the heat loss of the switches is also decreased, and it has the potential to output higher frequency. Meanwhile, soft switching is realized to ensure the high efficiency of the inverter, and asimple and mature phase-shifting or variable-frequency control scheme can be adopted to adjust the output power. Finally, a WPT experimental prototypebased on the triple-frequency inverter is built to verify the correctness and feasibility of the theoretical analysis and design of the triple-frequency inverter.
赵建松, 王军华, 蔡昌松, 牟建学, 罗阳. 基于分时复合的无线供电三倍频逆变器[J]. 电工技术学报, 2022, 37(21): 5513-5525.
Zhao Jiansong, Wang Junhua, Cai Changsong, Mu Jianxue, Luo Yang. Triple Frequency Inverter Based on Time-Sharing Composite for Wireless Power Transfer System. Transactions of China Electrotechnical Society, 2022, 37(21): 5513-5525.
[1] 韩冲, 张波. 谐振式无线电能传输系统中高频逆变器的特性分析和参数设计[J]. 电工技术学报, 2018, 33(21): 5036-5050. Han Chong, Zhang Bo.Characteristics analysis and parameters design of high frequency inverters in magnetic coupling resonance wireless power transfer system[J]. Transactions of China Electrotechnical Society, 2018, 33(21): 5036-5050. [2] 李时峰, 吕默影, 陈辉明. 一种新型超高频感应加热混合全桥逆变器[J]. 电工技术学报, 2013, 28(3): 215-221. Li Shifeng, Lü Moying, Chen Huiming.A novel hybrid full-bridge inverter for ultra-high frequency induction heating applications[J]. Transactions of China Electrotechnical Society, 2013, 28(3): 215-221. [3] 张波, 疏许健, 吴理豪, 等. 无线电能传输技术亟待解决的问题及对策[J]. 电力系统自动化, 2019, 43(18): 1-20. Zhang Bo, Shu Xujian, Wu Lihao, et al.Problems of wireless power transmission technology urgent to be solved and corresponding countermeasures[J]. Automation of Electric Power Systems, 2019, 43(18): 1-20. [4] 卿晓东, 苏玉刚. 电场耦合无线电能传输技术综述[J]. 电工技术学报, 2021, 36(17): 3649-3663. Qing Xiaodong, Su Yugang.An overview of electric-filed coupling wireless power transfer technology[J]. Transactions of China Electrotechnical Society, 2021, 36(17): 3649-3663. [5] 张少腾, 赵晋斌, 吴月宝, 等. 基于自互感调节的无线电能传输用E类逆变器软开关技术研究[J]. 电工技术学报, 2021, 36(21): 4558-4566. Zhang Shaoteng, Zhao Jinbin, Wu Yuebao, et al.Research on soft switching technology of class E inverter based on self mutual-inductance regulation in wireless power transfer[J]. Transactions of China Electrotechnical Society, 2021, 36(21): 4558-4566. [6] 葛学健, 孙跃, 唐春森, 等. 用于动态无线供电系统的双输出逆变器[J]. 电工技术学报, 2020, 35(4): 786-798. Ge Xuejian, Sun Yue, Tang Chunsen, et al.Dual-output inverter for dynamic wireless power transfer system[J]. Transactions of China Electrotechnical Society, 2020, 35(4): 786-798. [7] 周念成, 梁清泉, 王强钢, 等. 基于SS型磁耦合谐振无线电能传输频带序列划分[J]. 电力系统保护与控制, 2020, 48(12): 1-12. Zhou Niancheng, Liang Qingquan, Wang Qianggang, et al.Frequency band sequence allocation of magnetically coupled resonant wireless power transmission systems based on SS type[J]. Power System Protection and Control, 2020, 48(12): 1-12. [8] 高镇, 于广强, 刘宁. 基于E类放大器的电场耦合式水下无线电能传输系统设计[J]. 河海大学学报(自然科学版), 2019, 47(6): 560-567. Gao Zhen, Yu Guangqiang, Liu Ning.Design of electric-field coupled underwater wireless power transfer system based on Class E amplifier[J]. Journal of Hohai University (Natural Sciences), 2019, 47(6): 560-567. [9] 李晓英. AGV分段无接触供电系统设计[J]. 电力系统保护与控制, 2018, 46(17): 131-137. Li Xiaoying.Design of sectional structure of AGV contactless power supply system[J]. Power System Protection and Control, 2018, 46(17): 131-137. [10] 薛明, 杨庆新, 章鹏程, 等. 无线电能传输技术应用研究现状与关键问题[J]. 电工技术学报, 2021, 36(8): 1547-1568. Xue Ming, Yang Qingxin, Zhang Pengcheng, et al.Application status and key issues of wireless power transmission technology[J]. Transactions of China Electrotechnical Society, 2021, 36(8): 1547-1568. [11] 谢文燕, 陈为. 全方向无线电能传输技术研究进展[J]. 电力系统自动化, 2020, 44(4): 202-215. Xie Wenyan, Chen Wei.Research progress of omnidirectional wireless power transfer technology[J]. Automation of Electric Power Systems, 2020, 44(4): 202-215. [12] Zhang Zhen, Li Xingyu, Pang Hongliang, et al.Multiple-frequency resonating compensation for multichannel transmission of wireless power transfer[J]. IEEE Transactions on Power Electronics, 2021, 36(5): 5169-5180. [13] Wang Xiaoqiang, Xu Jianping, Mao Mengchuan, et al.An LCL-based SS compensated WPT converter with wide ZVS range and integrated coil structure[J]. IEEE Transactions on Industrial Electronics, 2021, 68(6): 4882-4893. [14] Cheng Chenwen, Zhou Zhe, Li Weiguo, et al.Long-distance wireless power transfer system powering multiple loads with constant voltage outputs using S-SP compensation[J]. IET Power Electronics, 2020, 13(9): 1729-1734. [15] Li Hongchang, Wang Kangping, Huang Lang, et al.Dynamic modeling based on coupled modes for wireless power transfer systems[J]. IEEE Transactions on Power Electronics, 2015, 30(11): 6245-6253. [16] Yeo T D, Kwon D, Khang S T, et al.Design of maximum efficiency tracking control scheme for closed-loop wireless power charging system employing series resonant tank[J]. IEEE Transactions on Power Electronics, 2017, 32(1): 471-478. [17] Shigeno A, Koizumi H.Voltage-source parallel resonant class E inverter[J]. IEEE Transactions on Power Electronics, 2019, 34(10): 9768-9778. [18] Fu Minfan, Yin He, Liu Ming, et al.Loading and power control for a high-efficiency Class E PA-driven megahertz WPT system[J]. IEEE Transactions on Industrial Electronics, 2016, 63(11): 6867-6876. [19] Liu Shuangke, Liu Ming, Yang Songnan, et al.A novel design methodology for high-efficiency current-mode and voltage-mode Class-E power amplifiers in wireless power transfer systems[J]. IEEE Transactions on Power Electronics, 2017, 32(6): 4514-4523. [20] Aldhaher S, Kkelis G, Yates D C, et al.Class EF2 inverters for wireless power transfer applications[C]// 2015 IEEE Wireless Power Transfer Conference, Boulder, CO, USA, 2015: 1-4. [21] Aldhaher S, Mitcheson P D, Yates D C.Load-independent Class EF inverters for inductive wireless power transfer[C]//2016 IEEE Wireless Power Transfer Conference, Aveiro, Portugal, 2016: 1-4. [22] Sugino M, Masamura T.The wireless power transfer systems using the Class E push-pull inverter for industrial robots[C]//2017 IEEE Wireless Power Transfer Conference. Taipei, China, 2017: 1-3. [23] Yates D C, Aldhaher S, Mitcheson P D.Design of 3 MHz DC/AC inverter with resonant gate drive for a 3.3 kW EV WPT system[C]//2016 IEEE 2nd Annual Southern Power Electronics Conference, Auckland, New Zealand, 2016: 1-4. [24] Mousavian H, Abnavi S, Bakhshai A, et al.A push-pull Class E converter with improved PDM control[C]//2016 IEEE 7th International Symposium on Power Electronics for Distributed Generation Systems, Vancouver, BC, Canada, 2016: 1-6. [25] Tebianian H, Salami Y, Jeyasurya B, et al.A 13.56-MHz full-bridge Class-D ZVS inverter with dynamic dead-time control for wireless power transfer systems[J]. IEEE Transactions on Industrial Electronics, 2020, 67(2): 1487-1497. [26] Xu Jiale, Gu Lei, Ye Zhechi, et al.Cascode GaN/SiC: a wide-bandgap heterogenous power device for high-frequency applications[J]. Transactions on Power Electronics, 2020, 35(6): 6340-6349. [27] 董淑惠, 李亚斌, 田丰. 时间分割式IGBT高频感应加热电源的研究[J]. 电力科学与工程, 2007, 23(4): 1-3. Dong Shuhui, Li Yabin, Tian Feng.Study on time-sharing IGBT high frequency power supply for induction heating[J]. Electric Power Science and Engineering, 2007, 23(4): 1-3. [28] 沈锦飞, 惠晶, 吴雷, 等. 倍频分时控制IGBT180kHz/50kW高频感应焊接电源[J]. 焊接学报, 2009, 30(9): 1-4, 113. Shen Jinfei, Hui Jing, Wu Lei, et al.Time-sharing controlled frequency multiplication of IGBT based 180 kHz/50 kW high frequency induction soldering power supply[J]. Transactions of the China Welding Institution, 2009, 30(9): 1-4, 113. [29] Cai Hua, Shi Liming.A novel multiple-frequency inverter topology for inductively coupled power transfer system[C]//IECON 2017-43rd Annual Conference of the IEEE Industrial Electronics Society, Beijing, China, 2017: 657-662. [30] Wang Yanan, Dong Lei, Liao Xiaozhong, et al.A pulse energy injection inverter for the switch-mode inductive power transfer system[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2018, 65(7): 2330-2340. [31] Cheng Bing, He Liangzong.A double-pulse energy injection converter with reduced switching frequency for MHz WPT system[J]. IEEE Transactions on Microwave Theory and Techniques, 2021, 69(7): 3475-3483. [32] Moradi A, Tahami F, GhaziMoghadam M A. Wireless power transfer using selected harmonic resonance mode[J]. IEEE Transactions on Transportation Electrification, 2017, 3(2): 508-519. [33] Zeng Hulong, Yang Shuitao, Peng F Z.Design consideration and comparison of wireless power transfer via harmonic current for PHEV and EV wireless charging[J]. IEEE Transactions on Power Electronics, 2017, 32(8): 5943-5952. [34] Liu Wei, Chau K T, Lee C H T, et al. Low-frequency-switching high-frequency-resonating wireless power transfer[J]. IEEE Transactions on Magnetics, 2021, 57(2): 1-8. [35] Cai Hua, Shi Liming, Li Yaohua.Harmonic-based phase-shifted control of inductively coupled power transfer[J]. IEEE Transactions on Power Electronics, 2014, 29(2): 594-602.