Review of Conducted Electromagnetic Interference Suppression Strategies for Switching Converters
He Jie1, Liu Yushan1, Bi Daqiang2, Li Xiao1
1. School of Automation Science and Electrical Engineering Beihang University Beijing 100083 China; 2. State Key Lab of Power Systems Department of Electrical Engineering Tsinghua University Beijing 100084 China
Abstract:Switching converters are widely applied in economy fields, where the electromagnetic interference (EMI) is becoming increasingly prominent, hence the suppression of EMI in switching converters becomes more essential. A state-of-the-art review of the conducted EMI suppression strategies for switching converters is presented, focusing on their basic principles, research statuses and effectiveness. The reviewed strategies include filtering, balance, compensation, improving pulse width modulation, power device/module packaging, printed circuit board design, improving switching process, etc. These strategies can be classified into two broad categories: blocking the coupling path and reducing the electromagnetic emission from the interference source. Finally, crucial questions and development prospects of conducted EMI suppression technologies for switching converters are discussed.
何杰, 刘钰山, 毕大强, 李晓. 开关变换器传导干扰抑制策略综述[J]. 电工技术学报, 2022, 37(6): 1455-1472.
He Jie, Liu Yushan, Bi Daqiang, Li Xiao. Review of Conducted Electromagnetic Interference Suppression Strategies for Switching Converters. Transactions of China Electrotechnical Society, 2022, 37(6): 1455-1472.
[1] Trzynadlowski A M.Power electronic converters and systems: frontiers and applications[M]. London: The Institution of Engineering and Technology, 2016. [2] Baliga B J.The IGBT device: physics, design and applications of the insulated gate bipolar transistor[M]. Oxford: William Andrew, 2015. [3] Smolenski R.Conducted electromagnetic interference (EMI) in smart grids[M]. London: Springer, 2012. [4] Luszcz J.High frequency conducted emission in AC motor drives fed by frequency converters: sources and propagation paths[M]. Hoboken, NJ: John Wiley & Sons, 2018. [5] Ogunsola A, Mariscotti A.Electromagnetic com-patibility in railways: analysis and management[M]. Heidelberg: Springer, 2013. [6] 马伟明, 张磊, 孟进. 独立电力系统及其电力电子装置的电磁兼容[M]. 北京: 科学出版社, 2007. [7] Paul C R.Introduction to electromagnetic com-patibility[M]. 2nd ed. Hoboken, NJ: John Wiley & Sons, 2006. [8] Zheng Junqi.Electromagnetic compatibility (EMC) design and test case analysis[M]. Hoboken, NJ: John Wiley & Sons, 2019. [9] Ott H W.Electromagnetic compatibility engineering[M]. Hoboken, NJ: John Wiley & Sons, 2009. [10] Costa F, Gautier C, Labouré E, et al.Electromagnetic compatibility in power electronics[M]. Hoboken, NJ: John Wiley & Sons, 2014. [11] Fang Zhihao, Jiang Dong, Zhang Yechi.Study of the characteristics and suppression of EMI of inverter with SiC and Si devices[J]. Chinese Journal of Electrical Engineering, 2018, 4(3): 37-46. [12] Mainali K, Oruganti R.Conducted EMI mitigation techniques for switch-mode power converters: a survey[J]. IEEE Transactions on Power Electronics, 2010, 25(9): 2344-2356. [13] Natarajan S, Babu T S, Balasubramanian K, et al.A state-of-the-art review on conducted electromagnetic interference in non-isolated DC to DC converters[J]. IEEE Access, 2020, 8: 2564-2577. [14] Yazdani M R, Farzanehfard H, Faiz J.Classification and comparison of EMI mitigation techniques in switching power converters-a review[J]. Journal of Power Electronics, 2011, 11(5): 767-777. [15] Li Hong, Li Zhong, Zhang Bo, et al.Suppressing electromagnetic interference in direct current con-verters[J]. IEEE Circuits and Systems Magazine, 2009, 9(4): 10-28. [16] Zhang Boyi, Wang Shuo.A survey of EMI research in power electronics systems with wide bandgap semiconductor devices[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 8(1): 626-643. [17] Gamoudi R, Chariag D E, Sbita L.A review of spread-spectrum-based PWM techniques-a novel fast digital implementation[J]. IEEE Transactions on Power Electronics, 2018, 33(12): 10292-10307. [18] 钱照明, 陈恒林. 电力电子装置电磁兼容研究最新进展[J]. 电工技术学报, 2007, 22(7): 1-11. Qian Zhaoming, Chen Henglin.State of art of electromagnetic compatibility research on power electronic equipment[J]. Transactions of China Elec-trotechnical Society, 2007, 22(7): 1-11. [19] 张逸成, 叶尚斌, 张佳佳, 等. 电力电子设备传导噪声抑制措施研究综述[J]. 电工技术学报, 2017, 32(14): 77-86. Zhang Yicheng, Ye Shangbin, Zhang Jiajia, et al.Review of conducted noise suppression method for power electronic and electrical equipment[J]. Transa-ctions of China Electrotechnical Society, 2017, 32(14): 77-86. [20] Narayanasamy B, Luo Fang.A survey of active EMI filters for conducted EMI noise reduction in power electronic converters[J]. IEEE Transactions on Elec-tromagnetic Compatibility, 2019, 61(6): 2040-2049. [21] 江师齐, 刘艺涛, 银杉, 等. 基于噪声源阻抗提取的单相逆变器电磁干扰滤波器的设计[J]. 电工技术学报, 2019, 34(17): 3552-3562. Jiang Shiqi, Liu Yitao, Yin Shan, et al.Electromagnetic interference filter design of single-phase inverter based on the noise source impedance extraction[J]. Transactions of China Electrotechnical Society, 2019, 34(17): 3552-3562. [22] Tarateeraseth V, Hu Bo, See K Y, et al.Accurate extraction of noise source impedance of an SMPS under operating conditions[J]. IEEE Transactions on Power Electronics, 2010, 25(1): 111-117. [23] Zhou Mengxia, Zhao Yang, Yan Wei, et al.Investi-gation on conducted EMI noise source impedance extraction for electro magnetic compatibility based on SP-GA algorithm[J]. IET Power Electronics, 2019, 12(7): 1792-1799. [24] Zheng Feng, Wang Wugang, Zhao Xiaofan, et al.Identifying electromagnetic noise-source impedance using hybrid of measurement and calculation method[J]. IEEE Transactions on Power Electronics, 2019, 34(10): 9609-9618. [25] Tarateeraseth V, See K Y, Canavero F G, et al.Systematic electromagnetic interference filter design based on information from in-circuit impedance measurements[J]. IEEE Transactions on Electromagnetic Compatibility, 2010, 52(3): 588-598. [26] Ala G, Giaconia G C, Giglia G, et al.Design and performance evaluation of a high power-density EMI filter for PWM inverter-fed induction-motor drives[J]. IEEE Transactions on Industry Applications, 2016, 52(3): 2397-2404. [27] 贾圣钰, 赵争鸣, 施博辰, 等. 电力电子系统电磁干扰数值建模分析[J]. 电工技术学报, 2021, 36(11): 2383-2393, 2423. Jia Shengyu, Zhao Zhengming, Shi Bochen, et al.Numerical modeling and analysis of electromagnetic interference in power electronics systems[J]. Transa-ctions of China Electrotechnical Society, 2021, 36(11): 2383-2393, 2423. [28] Xiang Yangxiao, Pei Xuejun, Zhou Wu, et al.A fast and precise method for modeling EMI source in two-level three-phase converter[J]. IEEE Transactions on Power Electronics, 2019, 34(11): 10650-10664. [29] Ohn S, Yu Jianghui, Rankin P, et al.Three-terminal common-mode EMI model for EMI generation, propagation, and mitigation in a full-SiC three-phase UPS module[J]. IEEE Transactions on Power Elec-tronics, 2019, 34(9): 8599-8612. [30] Wang Jianing, Liu Xiaohui, Xun Yuanwu, et al.Common mode noise reduction of three-level active neutral point clamped inverters with uncertain parasitic capacitance of photovoltaic panels[J]. IEEE Transactions on Power Electronics, 2020, 35(7): 6974-6988. [31] 段卓琳, 张栋, 范涛. SiC电机驱动系统传导电磁干扰建模及预测[J]. 电工技术学报, 2020, 35(22): 4726-4738. Duan Zhuolin, Zhang Dong, Fan Tao.Modeling and prediction of electromagnetic interference in SiC motor drive systems[J]. Transactions of China Electrotechnical Society, 2020, 35(22): 4726-4738. [32] Zhu Ruimin, Lin Ning, Dinavahi V, et al.An accurate and fast method for conducted EMI modeling and simulation of MMC-based HVDC converter station[J]. IEEE Transactions on Power Electronics, 2020, 35(5): 4689-4702. [33] 高璐, 徐策, 董光, 等. 基于电磁仿真软件的平面变压器共模电磁干扰建模方法及其应用[J]. 电工技术学报, 2020, 35(24): 5057-5063. Gao Lu, Xu Ce, Dong Guang, et al.Common mode electro-magnetic interference modeling method of planar transformers based on CST software and its application[J]. Transactions of China Electrotechnical Society, 2020, 35(24): 5057-5063. [34] Mantooth H A, Peng Kang, Santi E, et al.Modeling of wide bandgap power semiconductor devices-part I[J]. IEEE Transactions on Electron Devices, 2015, 62(2): 423-433. [35] Santi E, Peng Kang, Mantooth H A, et al.Modeling of wide-bandgap power semiconductor devices-part II[J]. IEEE Transactions on Electron Devices, 2015, 62(2): 434-442. [36] 黄华震, 仝涵, 王宁燕, 等. 考虑寄生振荡的IGBT分段暂态模型对电磁干扰预测的影响分析[J]. 电工技术学报, 2021, 36(12): 2434-2445. Huang Huazhen, Tong Han, Wang Ningyan, et al.Analysis of the influence of IGBT segmented transient model with parasitic oscillation on Electromagnetic interference prediction[J]. Transactions of China Electrotechnical Society, 2021, 36(12): 2434-2445. [37] Jiang Shiqi, Liu Yitao, Mei Zhaozhao, et al.A magnetic integrated LCL-EMI filter for a single-phase SiC-MOSFET grid-connected inverter[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 8(1): 601-617. [38] Chen Henglin, Ye Shize.Modeling and optimization of EMI filter by using artificial neural network[J]. IEEE Transactions on Electromagnetic Compatibility, 2019, 61(6): 1979-1987. [39] Ozenbaugh R L, Pullen T M.EMI filter design[M]. 3rd ed. Boca Raton, FL: CRC Press, 2017. [40] Tarateeraseth V.EMI filter design: part III: selection of filter topology for optimal performance[J]. IEEE Electromagnetic Compatibility Magazine, 2012, 1(2): 60-73. [41] Viani F, Robol F, Salucci M, et al.Automatic EMI filter design through particle swarm optimization[J]. IEEE Transactions on Electromagnetic Compatibility, 2017, 59(4): 1079-1094. [42] Zhang Xinmin, Khodabandeh M, Amirabadi M, et al.A simulation-based multifunctional differential mode and common mode filter design method for universal converters[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 8(1): 658-672. [43] Wang Shuo, Lee F C, van Wyk J D. A study of integration of parasitic cancellation techniques for EMI filter design with discrete components[J]. IEEE transactions on Power Electronics, 2008, 23(6): 3094-3102. [44] Yang Ming, Lyu Zekai, Xu Donglin, et al.Resonance suppression and EMI reduction of GaN-based motor drive with sine wave filter[J]. IEEE Transactions on Industry Applications, 2020, 56(3): 2741-2751. [45] Xing Lei, Sun Jian.Optimal damping of multistage EMI filters[J]. IEEE Transactions on Power Electro-nics, 2012, 27(3): 1220-1227. [46] Levron Y, Kim H, Erickson R W.Design of EMI filters having low harmonic distortion in high-power-factor converters[J]. IEEE Transactions on Power Electronics, 2014, 29(7): 3403-3413. [47] Chen Wenjie, Zhang Weiping, Yang Xu, et al.An experimental study of common-and differential-mode active EMI filter compensation characteristics[J]. IEEE Transactions on Electromagnetic Compatibility, 2009, 51(3): 683-691. [48] Wang Shuo, Maillet Y Y, Wang Fei, et al.Investi-gation of hybrid EMI filters for common-mode EMI suppression in a motor drive system[J]. IEEE Transactions on Power Electronics, 2010, 25(4): 1034-1045. [49] Goswami R, Wang Shuo.Investigation and modeling of combined feedforward and feedback control schemes to improve the performance of differential mode active EMI filters in AC-DC power con-verters[J]. IEEE Transactions on Industrial Elec-tronics, 2019, 66(8): 6538-6548. [50] Shin D, Jeong S, Baek Y, et al.A balanced feed-forward current-sense current-compensation active EMI filter for common-mode noise reduction[J]. IEEE Transactions on Electromagnetic Compatibility, 2020, 62(2): 386-397. [51] Chu Yongbin, Wang Shuo, Wang Qinghai.Modeling and stability analysis of active/hybrid common-mode EMI filters for DC/DC power converters[J]. IEEE Transactions on Power Electronics, 2016, 31(9): 6254-6263. [52] Ji Junping, Chen Wenjie, Yang Xu, et al.Delay and decoupling analysis of a digital active EMI filter used in arc welding inverter[J]. IEEE Transactions on Power Electronics, 2018, 33(8): 6710-6722. [53] Hamza D, Qiu Mei.Digital active EMI control technique for switch mode power converters[J]. IEEE Transactions on Electromagnetic Compatibility, 2013, 55(1): 81-88. [54] Shoyama M, Ohba M, Ninomiya T.Balanced Buck-Boost switching converter to reduce commom-mode conducted noise[J]. Journal of Power Electronics, 2002, 2(2): 139-145. [55] Wang Shuo, Kong Pengju, Lee F C.Common mode noise reduction for Boost converters using general balance technique[J]. IEEE transactions on power electronics, 2007, 22(4): 1410-1416. [56] Cochrane D, Chen D Y, Boroyevic D.Passive cancellation of common-mode noise in power electronic circuits[J]. IEEE Transactions on Power Electronics, 2003, 18(3): 756-763. [57] Wang Shuo, Lee F C.Analysis and applications of parasitic capacitance cancellation techniques for EMI suppression[J]. IEEE Transactions on Industrial Electronics, 2010, 57(9): 3109-3117. [58] Xie Lihong, Ruan Xinbo, Zhu Haonan, et al.Common-mode voltage cancellation for reducing the common-mode noise in DC-DC converters[J]. IEEE Transactions on Industrial Electronics, 2021, 68(5): 3887-3897. [59] Monmasson Eric.Power electronic converters: PWM strategies and current control techniques[M]. Hoboken, NJ: John Wiley & Sons, 2011. [60] Carson J R.Notes on the theory of modulation[J]. Proceedings of the Institute of Radio Engineers, 1922, 10(1): 57-64. [61] Pareschi F, Rovatti R, Setti G.EMI reduction via spread spectrum in DC/DC converters: state of the art, optimization, and tradeoffs[J]. IEEE Access, 2015, 3: 2857-2874. [62] Chen Jianan, Jiang Dong, Sun Wei, et al.A family of spread-spectrum modulation schemes based on distribution characteristics to reduce conducted EMI for power electronics converters[J]. IEEE Transa-ctions on Industry Applications, 2020, 56(5): 5142-5157. [63] Dahidah M S A, Konstantinou G, Agelidis V G. A review of multilevel selective harmonic elimination PWM: formulations, solving algorithms, implementation and applications[J]. IEEE Transactions on Power Electronics, 2015, 30(8): 4091-4106. [64] Amjad A M, Salam Z.A review of soft computing methods for harmonics elimination PWM for inverters in renewable energy conversion systems[J]. Rene-wable and Sustainable Energy Reviews, 2014, 33: 141-153. [65] Xin Yayun, Yi Jin, Zhang Kai, et al.Offline selective harmonic elimination with (2N+1) output voltage levels in modular multilevel converter using a differential harmony search algorithm[J]. IEEE Access, 2020, 8: 121596-121610. [66] Etesami M H, Farokhnia N, Fathi S H.Colonial competitive algorithm development toward harmonic minimization in multilevel inverters[J]. IEEE Transactions on Industrial Informatics, 2015, 11(2): 459-466. [67] Srndovic M, Zhetessov A, Alizadeh T, et al.Simultaneous selective harmonic elimination and THD minimization for a single-phase multilevel inverter with staircase modulation[J]. IEEE Transa-ctions on Industry Applications, 2018, 54(2): 1532-1541. [68] Moeini A, Dabbaghjamanesh M, Kimball J W, et al.Artificial neural networks for asymmetric selective harmonic current mitigation-PWM in active power filters to meet power quality standards[J/OL]. IEEE Transactions on Industry Applications, 1: 9[2020-07-07]. https://doi.org/10.1109/TIA.2020.3007596. [69] Etesami M H, Vilathgamuwa D M, Ghasemi N, et al.Enhanced metaheuristic methods for selective harmonic elimination technique[J]. IEEE Transactions on Industrial Informatics, 2018, 14(12): 5210-5220. [70] Chen Henglin, Zhao Huan.Review on pulse-width modulation strategies for common-mode voltage reduction in three-phase voltage-source inverters[J]. IET Power Electronics, 2016, 9(14): 2611-2620. [71] Hava A M, Ün E.Performance analysis of reduced common-mode voltage PWM methods and com-parison with standard PWM methods for three-phase voltage-source inverters[J]. IEEE Transactions on Power Electronics, 2009, 24(1): 241-252. [72] Xu Junzhong, Han Jingwen, Wang Yong, et al.High-frequency SiC three-phase VSIs with common-mode voltage reduction and improved performance using novel tri-state PWM method[J]. IEEE Transactions on Power Electronics, 2019, 34(2): 1809-1822. [73] Peng Hongwu, Yuan Zhao, Zhao Xingchen, et al.Improved space vector modulation for neutral-point balancing control in hybrid-switch-based T-type neutral-point-clamped inverters with loss and common-mode voltage reduction[J]. CPSS Transa-ctions on Power Electronics and Applications, 2019, 4(4): 328-338. [74] Jiang Dong, Shen Zewei, Wang Fei.Common-mode voltage reduction for paralleled inverters[J]. IEEE Transactions on Power Electronics, 2018, 33(5): 3961-3974. [75] Xiong Wenjing, Sun Yao, Su Mei, et al.Carrier-based modulation strategies with reduced common-mode voltage for five-phase voltage source inverters[J]. IEEE Transactions on Power Electronics, 2018, 33(3): 2381-2394. [76] Shen Zewei, Jiang Dong, Liu Zicheng, et al.Common-mode voltage elimination for dual two-level inverter-fed asymmetrical six-phase PMSM[J]. IEEE Transactions on Power Electronics, 2020, 35(4): 3828-3840. [77] Chee S J, Ko S, Kim H S, et al.Common-mode voltage reduction of three-level four-leg PWM converter[J]. IEEE Transactions on Industry Applications, 2015, 51(5): 4006-4016. [78] Karugaba S, Muetze A, Ojo O.On the common-mode voltage in multilevel multiphase single-and double-ended diode-clamped voltage-source inverter systems[J]. IEEE Transactions on Industry Applications, 2012, 48(6): 2079-2091. [79] Wu Xiang, Tan Guojun, Ye Zongbin, et al.Optimized common-mode voltage reduction PWM for three-phase voltage-source inverters[J]. IEEE Transactions on Power Electronics, 2016, 31(4): 2959-2969. [80] Xing Xiangyang, Chen Hua.A fast-processing predictive control strategy for common mode voltage reduction in parallel three-level inverters[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9(1): 316-326. [81] 蒋栋. 电力电子变换器的先进脉宽调制技术[M]. 北京: 机械工业出版社, 2018. [82] Hwang Y S, Chen J J, Yang J, et al.A low-EMI continuous-time delta-sigma-modulator Buck converter with transient response eruption techniques[J]. IEEE Transactions on Industrial Electronics, 2020, 67(8): 6854-6863. [83] Xu Jianping, Wang Jinping.Bifrequency pulse-train control technique for switching DC-DC converters operating in DCM[J]. IEEE Transactions on Industrial Electronics, 2011, 58(8): 3658-3667. [84] Huang Huazhen, Wu Jialing, Xu Weihua, et al.The influence of driving parameters on conducted EMI for an IGBT module[J]. IEEE Transactions on Electromagnetic Compatibility, 2020, 62(5): 2285-2293. [85] Bödeker C, Ayerbe E, Kaminski N.Impact of a Kelvin source connection on discrete high power SiC-MOSFETs[J]. Materials Science Forum, 2018, 924: 723-726. [86] Kim J, Shin D, Sul S K.A damping scheme for switching ringing of full SiC MOSFET by air core PCB circuit[J]. IEEE Transactions on Power Electronics, 2018, 33(6): 4605-4615. [87] Xie Yue, Chen Cai, Huang Zhizhao, et al.High frequency conducted EMI investigation on packaging and modulation for a SiC-based high frequency converter[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2019, 7(3): 1789-1804. [88] Wang Jianjing, Chung H S, Li R T.Characterization and experimental assessment of the effects of parasitic elements on the MOSFET switching per-formance[J]. IEEE Transactions on Power Electronics, 2013, 28(1): 573-590. [89] Dalal D N, Christensen N, Jrgensen A B, et al.Impact of power module parasitic capacitances on medium-voltage SiC MOSFETs switching transients[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 8(1): 298-310. [90] Li Shengnan, Tolbert L M, Wang Fei, et al.Stray inductance reduction of commutation loop in the P-cell and N-cell-based IGBT phase leg module[J]. IEEE Transactions on Power Electronics, 2014, 29(7): 3616-3624. [91] Brovont A D, Lemmon A N, New C, et al.Analysis and cancellation of leakage current through power module baseplate capacitance[J]. IEEE Transactions on Power Electronics, 2020, 35(5): 4678-4688. [92] Wang Miao, Luo Fang, Xu Longya.A double-end sourced wire-bonded multichip SiC MOSFET power module with improved dynamic current sharing[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2017, 5(4): 1828-1836. [93] Liang Zhenxian, Ning Puqi, Wang Fred, et al.A phase-leg power module packaged with optimized planar interconnections and integrated double-sided cooling[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2014, 2(3): 443-450. [94] Vagnon E, Jeannin P O, Crebier J C, et al.A bus-bar-like power module based on three-dimensional power-chip-on-chip hybrid integration[J]. IEEE Transactions on Industry Applications, 2010, 46(5): 2046-2055. [95] Wang Kangping, Wang Laili, Yang Xu, et al.A multiloop method for minimization of parasitic inductance in GaN-based high-frequency DC-DC converter[J]. IEEE Transactions on Power Electronics, 2017, 32(6): 4728-4740. [96] Reusch D, Strydom J.Understanding the effect of PCB layout on circuit performance in a high-frequency gallium-nitride-based point of load con-verter[J]. IEEE Transactions on Power Electronics, 2014, 29(4): 2008-2015. [97] Bhargava A, Pommerenke D, Kam K W, et al.DC-DC Buck converter EMI reduction using PCB layout modification[J]. IEEE Transactions on Electromagnetic Compatibility, 2011, 53(3): 806-813. [98] DiMarino C M, Mouawad B, Johnson C M, et al. 10kV SiC MOSFET power module with reduced common-mode noise and electric field[J]. IEEE Transactions on Power Electronics, 2020, 35(6): 6050-6060. [99] Lee H, Smet V, Tummala R.A review of SiC power module packaging technologies: challenges, advances, and emerging issues[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 8(1): 239-255. [100] Hou Fengze, Wang Wenbo, Cao Liqiang, et al.Review of packaging schemes for power module[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 8(1): 223-238. [101] Chen Cai, Luo Fang, Kang Yong.A review of SiC power module packaging: layout, material system and integration[J]. CPSS Transactions on Power Electro-nics and Applications, 2017, 2(3): 170-186. [102] Archambeault B R, Drewniak J.PCB design for real-world EMI control[M]. New York: Springer, 2013. [103] Montrose M I.EMC and the printed circuit board: design, theory, and layout made simple[M]. New York: IEEE Press, 1999. [104] Chen Cai, Pei Xuejun, Chen Yu, et al.Investigation, evaluation, and optimization of stray inductance in laminated busbar[J]. IEEE Transactions on power electronics, 2014, 29(7): 3679-3693. [105] Caponet M C, Profumo F, De Doncker R W, et al. Low stray inductance bus bar design and construction for good EMC performance in power electronic circuits[J]. IEEE Transactions on Power Electronics, 2002, 17(2): 225-231. [106] 朱俊杰, 原景鑫, 聂子玲, 等. 基于全碳化硅功率组件的叠层母排优化设计研究[J]. 中国电机工程学报, 2019, 39(21): 6383-6394. Zhu Junjie, Yuan Jingxin, Nie Ziling, et al.Optimum design of planer busbar based on all-silicon carbide power module[J]. Proceedings of the CSEE, 2019, 39(21): 6383-6394. [107] 阮杰, 刘畅, 李广卓. 适用于器件并联型ANPC拓扑的低感叠层母排设计方法[J]. 高电压技术, 2019, 45(7): 2093-2100. Ruan Jie, Liu Chang, Li Guangzhuo.Design method of low-inductance laminated busbar for device-parallel ANPC circuit[J]. High Voltage Engineering, 2019, 45(7): 2093-2100. [108] Grobler I, Gitau M N.Analysis, modelling and measurement of the effects of aluminium and polymer heatsinks on conducted electromagnetic compatibility in DC-DC converters[J]. IET Science, Measurement & Technology, 2017, 11(4): 414-422. [109] Gong Xun, Josifović I, Ferreira J A.Modeling and reduction of conducted EMI of inverters with SiC JFETs on insulated metal substrate[J]. IEEE Transa-ctions on Power Electronics, 2013, 28(7): 3138-3146. [110] Gong Xun, Ferreira J A.Investigation of conducted EMI in SiC JFET inverters using separated heat sinks[J]. IEEE Transactions on Industrial Electronics, 2014, 61(1): 115-125. [111] Oswald N, Anthony P, McNeill N, et al. An experimental investigation of the tradeoff between switching losses and EMI generation with hard-switched all-Si, Si-SiC, and all-SiC device com-binations[J]. IEEE Transactions on Power Electronics, 2014, 29(5): 2393-2407. [112] García-Caraveo A, Soto Á, González R, et al.Brief review on snubber circuits[C]//2010 20th Inter-national Conference on Electronics Communications and Computers (CONIELECOMP), Cholula, Puebla, Mexico, 2010: 271-275. [113] Batarseh I, Harb A.Soft-switching DC-DC con-verters[M]//Cham: Springer, Power Electronics: Circuit Analysis and Design. 2nd ed. 2018: 347-460. [114] Rashid M H, Hui S Y R, Chung H S H. Resonant and soft-switching converters[M]//Oxford: Butterworth-Heinemann, Rashid M H. Power Electronics Handbook. 4th ed. 2018: 339-383. [115] Yano Y, Kawata N, Iokibe K, et al.A method for optimally designing snubber circuits for Buck converter circuits to damp LC resonance[J]. IEEE Transactions on Electromagnetic Compatibility, 2019, 61(4): 1217-1225. [116] Mohammadi M, Adib E, Yazdani M R.Family of soft-switching single-switch PWM converters with lossless passive snubber[J]. IEEE Transactions on Industrial Electronics, 2015, 62(6): 3473-3481. [117] Mohammadi M R, Peyman H, Yazdani M R, et al.A ZVT bidirectional converter with coupled-filter-inductor and elimination of input current notches[J]. IEEE Transactions on Industrial Electronics, 2020, 67(9): 7461-7469. [118] Charalambous A, Yuan Xibo, McNeill N. High-frequency EMI attenuation at source with the auxiliary commutated pole inverter[J]. IEEE Transa-ctions on Power Electronics, 2018, 33(7): 5660-5676. [119] Zhao Shuang, Zhao Xingchen, Dearien A, et al.An intelligent versatile model-based trajectory-optimized active gate driver for silicon carbide devices[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 8(1): 429-441. [120] Obara H, Wada K, Miyazaki K, et al.Active gate control in half-bridge inverters using programmable gate driver ICs to improve both surge voltage and converter efficiency[J]. IEEE Transactions on Industry Applications, 2018, 54(5): 4603-4611. [121] Wang Rui, Liang Lin, Chen Yu, et al.Self-adaptive active gate driver for IGBT switching performance optimization based on status monitoring[J]. IEEE Transactions on Power Electronics, 2020, 35(6): 6362-6372. [122] Jiang Yanfeng, Feng Chao, Yang Zhichang, et al.A new active gate driver for MOSFET to suppress turn-off spike and oscillation[J]. Chinese Journal of Electrical Engineering, 2018, 4(2): 43-49. [123] Shu Lu, Zhang Junming, Peng Fangzheng, et al.Active current source IGBT gate drive with closed-loop di/dt and dv/dt control[J]. IEEE Transactions on Power Electronics, 2017, 32(5): 3787-3796. [124] Lobsiger Y, Kolar J W.Closed-loop di/dt and dv/dt IGBT gate driver[J]. IEEE Transactions on Power Electronics, 2015, 30(6): 3402-3417. [125] Camacho A P, Sala V, Ghorbani H, et al.A novel active gate driver for improving SiC MOSFET switching trajectory[J]. IEEE Transactions on Indu-strial Electronics, 2017, 64(11): 9032-9042. [126] Dymond H C P, Wang Jianjing, Liu Dawei, et al. A 6.7GHz active gate driver for GaN FETs to combat overshoot, ringing, and EMI[J]. IEEE Transactions on Power Electronics, 2018, 33(1): 581-594. [127] Zhao Shuang, Zhao Xingchen, Wei Yuqi, et al.A review on switching slew rate control for silicon carbide devices using active gate drivers[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9(4): 4096-4114. [128] 王宁, 张建忠. 基于开关轨迹优化的SiC MOSFET有源驱动电路研究综述[J/OL]. 电工技术学报: 1-15[2022-01-26]. DOI: 10.19595/j.cnki.1000-6753.tces. 210560. Wang Ning, Zhang Jianzhong.Review of active gate driver for SiC MOSFET with switching trajectory optimization[J/OL]. Transactions of China Electro-technical Society: 1-15[2022-01-26]. DOI: 10.19595/j. cnki.1000-6753.tces.210560. [129] Oswald N, Stark B H, Holliday D, et al.Analysis of shaped pulse transitions in power electronic switching waveforms for reduced EMI generation[J]. IEEE Transactions on Industry Applications, 2011, 47(5): 2154-2165. [130] Patin N, Viñals M L.Toward an optimal Heisenberg's closed-loop gate drive for Power MOSFETs[C]// IECON 2012-38th Annual Conference on IEEE Industrial Electronics Society, Montreal, QC, Canada, 2012: 828-833. [131] Mori T, Funato H, Ogasawara S, et al.H-bridge step-down converter applied proposed switching transient waveform modification to reduce specific harmo-nics[C]//2012 International Conference on Renewable Energy Research and Applications (ICRERA), Nagasaki, Japan, 2012: 1-6. [132] Cui Tongkai, Ma Qishuang, Xu Ping, et al.Analysis and optimization of power MOSFETs shaped switching transients for reduced EMI generation[J]. IEEE Access, 2017, 5: 20440-20448. [133] Yang Xin, Long Zhiqiang, Wen Yanhui, et al.Investigation of the trade-off between switching losses and EMI generation in Gaussian S-shaping for high-power IGBT switching transients by active voltage control[J]. IET Power Electronics, 2016, 9(9): 1979-1984. [134] Blank M, Glück T, Kugi A, et al.Digital slew rate and S-shape control for smart power switches to reduce EMI generation[J]. IEEE Transactions on Power Electronics, 2015, 30(9): 5170-5180. [135] Zhang Yechi, Shen Zewei, Jiang Dong.An integrated EMI filter scheme for paralleled inverter with zero-CM PWM algorithm[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9(1): 716-726. [136] Jayaraman K, Kumar M.Design of passive common-mode attenuation methods for inverter-fed induction motor drive with reduced common-mode voltage PWM technique[J]. IEEE Transactions on Power Electronics, 2020, 35(3): 2861-2870. [137] Park H P, Jeong S, Kim M, et al.Spread spectrum technique for decreasing EM noise in high-frequency APWM HB resonant converter with reduced EMI filter size[J]. IEEE Transactions on Power Electronics, 2019, 34(11): 10845-10855. [138] Tian Yidong, Yang Xu, Chen Wenjie.A novel copper layer based field-to-trace coupling model and EMS evaluation method for DSP-based control circuit in MMC-HVDC system[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2019, 9(1): 1133-1146. [139] Nguyen V S, Lefranc P, Crebier J C.Gate driver supply architectures for common mode conducted EMI reduction in series connection of multiple power devices[J]. IEEE Transactions on Power Electronics, 2018, 33(12): 10265-10276.